
TFF

Text Formatting Functions

The TFF string function provides functions for formatting text. The general syntax is:

TFF (string-value [,optional-arguments,…], option-string
[,ERR=line-ref|,ERC=error-code])

The text string to be formatted is specified by string-value and the function is specified by
option-string. The number of optional-arguments depends on the function. The available
functions are described in the following sections.

String Search and Replace functions

This TFF string function performs search and replace functions on a string.

SYNTAX

TFF (string-value, search-for, replace-with [,separator], option-string
[,ERR=line-ref|,ERC=error-code])

string-value is the string to be searched.

search-for is a string specifying one or more values to search for.

replace-with is a string specifying one or more replacement values.

separator is an optional separator character.

option-string is a string specifying the option code.

line-ref is the program line number or label to branch to if an error is produced by this
function.

error-code is a programmer-defined error code. Valid values are positive or negative
whole numbers.

OPTION CODES

This TFF function searches the string-value replacing each matching search-for value with
the corresponding replace-with value. If the optional separator character is included, multiple
search and replace pairs are processed in a single function call. Appending a plus sign to the
option-string causes leading and trailing spaces and tabs to be removed from each replace-
with value.

"S" Replace all matching search strings.

"s" Replace only the first matching search string.

EXAMPLES

LET U$ = TFF("Your code is %C", "%C", "1234", "s")

U$ will contain “Your code is 1234”

LET S$ = TFF("Dear %NAME;", "%NAME", #UTCUST.CUST-NAME, "s+")

S$ contains “Dear Warren Baseball Club;” with trailing spaces removed from CUST-NAME.

LET SEP$="|";

LET A$="[[sessionid]]" + SEP$ + "[[format]]";

LET B$=SESSION$ + SEP$ + FORMAT$;

LET HTML$ = TFF(HTML$,A$,B$,SEP$,"S")

SEP$ is the character used to separate search and replace strings. Every occurrence of
"[[sessionid]]" in HTML$ will be replaced with the contents of SESSION$ and every
occurrence of "[[format]]" in HTML$ will be replaced with the contents of FORMAT$. If
there will be only one match for each search argument, a lower case "s" option-string should
be used to improve performance.

Internet Uniform Resource Locator functions

This TFF string function implements encoding and decoding of Internet URL strings.

TFF (string-value, option-string [,ERR=line-ref|,ERC=error-code])

string-value is the string to be encoded or decoded.

option-string is a string specifying the option code.

line-ref is the program line number or label to branch to if an error is produced by this
function.

error-code is a programmer-defined error code. Valid values are positive or negative
whole numbers.

OPTION CODES

URL encoding converts all but specific ASCII characters into a %HH notation consisting of a
percent sign character and two hexadecimal characters. Alphanumeric characters 0-9, A-Z,
and a-z, and the special characters !()*-._~ are not encoded. Decoding converts an encoded
string back to its original form.

"E" Encode string-value.

"D" Decode string-value.

"E+" Encode string-value and replace space characters with a plus sign.

"D+" Decode string-value and replace plus sign characters with a space.

EXAMPLES

LET U$ = TFF("This is a simple & short test","E")

U$ will contain “This%20is%20a%20simple%20%26%20short%20test”

LET U$ = TFF("This is a simple & short test","E+")

U$ will contain “This+is+a+simple+%26+short+test”

PRINT TFF(U$,"D")

If U$ contains the result of the first example, “This is a simple & short test” will be printed.

PRINT TFF(U$,"D+")

If U$ contains the result of the second example, “This is a simple & short test” will be
printed.

Encrypt a String function

This TFF string function uses internal cipher routines to encrypt a string.

TFF (string-value, key-string, option-string
[,ERR=line-ref|,ERC=error-code])

string-value is the string to be encrypted or decrypted.

key-string is a string specifying an encryption key or password. Minimum size is 4
characters. Maximum size is 8 characters.

option-string is a string with the value "C" to select this function.

line-ref is the program line number or label to branch to if an error is produced by this
function.

error-code is a programmer-defined error code. Valid values are positive or negative
whole numbers.

REMARKS

This TFF function uses internal cipher routines with the specified key-string to produce a
random eight-byte string. The XOR string function is then called to reverse random bits in
string-value to produce the result string. When string-value is the result of a previous
encryption and the original key-string is provided, the new result will be the original string-
value.

This function produces strings containing binary characters that could be misinterpreted by
applications, such as the Basic Field Separator ($8A$), the Basic Escape ($1B$), ASCII
control characters such as TAB (09), and String Terminators (00 and 24). The HTA
string function may be useful to convert an encrypted string to ASCII format.

Since a particular key-string will always produce the same random string, key-strings should
be changed periodically.

EXAMPLES

LET E$ = TFF("123-45-6789","SSNKEY","C")

E$ will contain $F59D6CB0DC97540CF39766$

LET A$="123 Old Lake Shore Road", P$="PASSWORD";
LET B$=TFF(A$, P$, "C"), C$=TFF(B$, P$, "C")

B$ will contain the encrypted result string and C$ will contain the same value as the original
A$.

XML output function

This TFF string function produces an XML formatted string from a FORMAT.

TFF (format-name [,data-names], option-string
[,ERR=line-ref|,ERC=error-code])

format-name is a string specifying the name of a format that has been loaded into memory
using the FORMAT INCLUDE directive and populated with data.

data-names is an optional string specifying data elements to be selected from format-name.

option-string is a string specifying the option codes.

line-ref is the program line number or label to branch to if an error is produced by this
function.

error-code is a programmer-defined error code. Valid values are positive or negative
whole numbers.

OPTION CODES

This function creates an XML formatted string from all or selected elements of a format in
memory. The option-string begins with "XO" and may be followed by any of the optional
codes listed below. See the remarks section for complete descriptions. Commas, spaces and
tabs may be included to improve readability.

"XO" Selects the XML Output function.

"C" Include Century in dates.

"D" Use data element descriptions.

"R" Special character replacement.

"E" Special character encoding.

"e" Special character encoding without semicolons.

"Y" Include empty fields.

REMARKS

The optional data-names argument is used to select data elements to be output. The string
contains a list of 20 character data names. Non-matching data names are ignored. All
elements in the format are output if data-names is omitted.

Each selected data element is formatted with an XML Start-Tag, the data element’s contents
converted to text, and an XML End-Tag. Dashes in the XML tags are replaced with
underscores. The optional codes invoke additional formatting as needed.

Five markup delimiters &, <, >, ’, and " are prohibited in XML tags. These characters are
automatically encoded with &, <, >, ', and ". The "E" option requests
that this encoding be applied to the formatted text. The "e" option does not produce the
semicolons.

The "D" option requests that data descriptions contained in format-name be used to create the
XML tags. A language selection must have been present in the #IDSV system format when
the FORMAT INCLUDE for format-name was executed. This option is ignored if
descriptions are not available.

The "R" option specifies character replacement. This option requires arguments in the form:
DFDTD, where D is a user selected delimiter character, F is one or more characters to be
replaced, and T is zero or more replacement characters. The readability characters are
considered normal characters in these arguments. Characters from the F list found in the
formatted text are replaced with corresponding characters in the T list. When the F list is
longer than the T list, the extra F list characters are removed from the text.

The "C" option requests that the century be output if included in a date element. The default
is two year digits.

The "Y" option requests that the XML tags be output when a data element is considered
empty. The default is to skip empty elements.

EXAMPLES

For the examples the following code is used to FORMAT INCLUDE and populate a
FORMAT. Line Feeds are inserted in the output for clarity.

FORMAT INCLUDE #TFFORDER
LET #TFFORDER.ITEM-CODE="2008RC"
LET #TFFORDER.DESCRIPTION="Rocking Chair"
LET #TFFORDER.ORDER-QUANTITY=2
LET #TFFORDER.ORDER-DATE=DTN("060708","MMDDYY")

This is an example of the default XML formatting. Dashes have been replaced with
underscores.

LET XML$=TFF("#TFFORDER","XO"); PRINT XML$

<ITEM_CODE>2008RC</ITEM_CODE>
<DESCRIPTION>Rocking Chair</DESCRIPTION>
<ORDER_QUANTITY>2</ORDER_QUANTITY>
<ORDER_DATE>06/07/08</ORDER_DATE>

This example shows how the "D" option code uses Data Descriptions to create XML tags.
Spaces in the descriptions are replaced with underscores.

LET XML$=TFF("#TFFORDER","XOD"); PRINT XML$

<Item_Code>2008RC</Item_Code>
<Item_Description>Rocking Chair</Item_Description>
<Quantity_Ordered>2</Quantity_Ordered>
<Order_Date>06/07/08</Order_Date>

This example selects a single Data Element and uses the "C" option code to include century
in a date. Complete formatting of dates can be accomplished by using the DM= Valid Value
option in the Format.

LET XML$=TFF("#TFFORDER",PAD("ORDER-DATE",20),"XOC"); PRINT XML$

<ORDER_DATE>06/07/2008</ORDER_DATE>

This example shows how to select and control the order of Data Elements.

LET SEL$=PAD("ORDER-DATE",20)+PAD("ITEM-CODE",20)
LET XML$=TFF("#TFFORDER",SEL$,"XOD"); PRINT XML$

<Order_Date>06/07/08</Order_Date>
<Item_Code>2008RC</Item_Code>

XML input function

This TFF string function uses an XML formatted string to update a FORMAT.

TFF (format-name, xml-string [,data-names], option-string
[,ERR=line-ref|,ERC=error-code])

format-name is a string specifying the name of a format that has been loaded into memory
using the FORMAT INCLUDE directive.

xml-string is a string containing XML formatted data.

data-names is an optional string specifying data elements to be selected from format-name.

option-string is a string specifying the option codes.

line-ref is the program line number or label to branch to if an error is produced by this
function.

error-code is a programmer-defined error code. Valid values are positive or negative
whole numbers.

OPTION CODES

This function uses data extracted from an XML formatted string to update elements of a
format in memory. The option-string begins with "XI" and may be followed by any of the
optional codes listed below. See the remarks section for complete descriptions. Commas,
spaces and tabs may be included to improve readability.

"XI" Selects the XML Input function.

"D" Use data element descriptions.

"R" Special character replacement.

"E" Special character decoding.

"e" Special character decoding without semicolons.

"L" Produce a list of data elements that were updated.

REMARKS

This function uses XML tags in xml-string to select data elements in format-name. Non-
matching tags are ignored. The output of this function is an XML formatted list of errors that
prevented a successful update. Each error entry is formatted <ERR>NNNTag</ERR>, where
NNN is a Basic error number from –99 to 999 and Tag is the XML Start-Tag in xml-string.

The optional data-names argument is used to select data elements to be updated. The string
contains a list of 20 character data names. Data names matching XML tags but missing from
data-names will be skipped.

Five markup delimiters &, <, >, ', and " are automatically decoded in
XML tags as &, <, >, ’, and ". The "E" option requests that this decoding be applied to the
formatted text. The "e" option does not require the semicolons.

The "D" option requests that data descriptions contained in format-name be used to match
XML tags. A language selection must have been present in the #IDSV system format when
the FORMAT INCLUDE for format-name was executed. This option is ignored if data
descriptions are not available. When the data-names argument is included, a data name
selected by matching a description must also exist in data-names.

The "R" option specifies character replacement. This option requires arguments in the form:
DFDTD, where D is a user selected delimiter character, F is one or more characters to be
replaced, and T is zero or more replacement characters. The readability characters are
considered normal characters in these arguments. Characters from the F list found in the
XML formatted text are replaced with corresponding characters in the T list. When the F list
is longer than the T list, the extra F list characters are removed from the text.

The "L" option produces a list of data names that were successfully updated. The list follows
the list of errors in the output string.

EXAMPLES

The examples refer to a FORMAT named #TFFORDER defining four Data Elements shown
in the table below. A successful FORMAT INCLUDE #TFFORDER has been executed and
language "EN" has been set in the #IDSV system format.

Element Name Size Type EN Description
============== ==== ========= ================
ITEM-CODE 6 Character Item Code
DESCRIPTION 20 Character Item Description
ORDER-QUANTITY 3.0 Integer Quantity Ordered
ORDER-DATE 6.0 SQL Date Order Date

In the example below the formatted string in XML$ is used to set all four fields in FORMAT
#TFFORDER. Underscores are automatically converted to dashes.

XML$="<ITEM_CODE>2008RC</ITEM_CODE>
 <DESCRIPTION>Rocking Chair</DESCRIPTION>
 <ORDER_QUANTITY>2</ORDER_QUANTITY>
 <ORDER_DATE>06/07/08</ORDER_DATE>"

LET ERR$=TFF("#TFFORDER",XML$,"XI")

In the example below the "D" option code indicates Data Descriptions are used in the XML
string in place of Element Names. The order of Data Elements does not need to match the
XML data. Underscores are automatically converted to spaces.

XML$="<Quantity_Ordered>2</Quantity_Ordered>
 <Item_Code>2008RC</Item_Code>
 <Item_Description>Rocking Chair</Item_Description>
 <Order_Date>06/07/08</Order_Date>"

LET ERR$=TFF("#TFFORDER",XML$,"XID")

This example shows how DM= can be used in an XML Tag to specify the format of a date in
the XML data.

XML$="<ORDER_DATE DM=YYYYMMDD>20080706</ORDER_DATE>"

LET ERR$=TFF("#TFFORDER",XML$,"XI")

This example shows an update list produced by the "L" option code. The example also
shows how to use a data-names list to select specific XML Tags. The data-names list must
be in the same order as the XML data for the update list to match.

XML$="<ITEM_CODE>2008RC</ITEM_CODE>
 <DESCRIPTION>Rocking Chair</DESCRIPTION>
 <ORDER_QUANTITY>2</ORDER_QUANTITY>
 <ORDER_DATE>06/07/08</ORDER_DATE>"

LET SEL$=PAD("ORDER-QUANTITY",20)+PAD("ORDER-DATE",20)
LET LST$=TFF("#TFFORDER",XML$,SEL$,"XIL"); PRINT LST$
<updatelist>ORDER-QUANTITY ORDER-DATE </updatelist>

This example output from the TFF() function shows that ORDER-DATE was updated before
the ERR=167 was detected in the data for ORDER-QUANTITY. XML Tags are used in the
error list and Data Element names are used in the update list.

XML$="<ORDER_DATE>06/07/08</ORDER_DATE>
 <ORDER_QUANTITY>1234</ORDER_QUANTITY>"

LET ERR$=TFF("#TFFORDER",XML$,"XIL"); PRINT ERR$
<ERR>167ORDER_QUANTITY</ERR><updatelist>ORDER-DATE </updatelist>

	TFF

