
Thoroughbred® BasicTM
Developer Guide

Version 8.8.0

46 Vreeland Drive, Suite 1 • Skillman, NJ 08558-2638
Telephone: 732-560-1377 • Outside NJ 800-524-0430

Fax: 732-560-1594

Internet address: http://www.tbred.com

Published by:
Thoroughbred Software International, Inc.
46 Vreeland Drive, Suite 1
Skillman, New Jersey 08558-2638

Copyright  2014 by Thoroughbred Software International, Inc.

All rights reserved. No part of the contents of this document
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Document Number: BD8.8.0M101

The Thoroughbred logo, Swash logo, and Solution-IV Accounting logo, OPENWORKSHOP, THOROUGHBRED, VIP FOR
DICTIONARY-IV, VIP, VIPImage, DICTIONARY-IV, and SOLUTION-IV are registered trademarks of Thoroughbred
Software International, Inc.

Thoroughbred Basic, TS Environment, T-WEB, Script-IV, Report-IV, Query-IV, Source-IV, TS Network DataServer,
TS ODBC DataServer, TS ODBC R/W DataServer, TS DataServer for Oracle, TS XML DataServer, GWW, Gateway
for Windows™, TS ChartServer, TS ReportServer, TS WebServer, TbredComm, WorkStation Manager, Solution-IV
Reprographics, Solution-IV ezRepro, TS/Xpress, and DataSafeGuard are trademarks of Thoroughbred Software
International, Inc.

Other names, products and services mentioned are the trademarks or registered trademarks of their respective vendors or
organizations.

Copyright  2014 Thoroughbred Software International, Inc.

Preface

Thoroughbred Basic is a business BASIC designed to meet the needs of
developers who design, code, enhance, and maintain business
applications. The Thoroughbred Basic language is part of the
Thoroughbred Environment, part of the Thoroughbred 4GL
Environment, or part of the Thoroughbred OPENworkshop Environment.

The Thoroughbred Basic Developer Guide contains a summary of
concepts implicit in the Thoroughbred Basic language, descriptions of
how Thoroughbred Basic can interact with site hardware and software,
and a summary of all Thoroughbred Basic directives, functions, and
system variables. This manual assumes knowledge of the BASIC
language, programming concepts, and program development procedures.

The Thoroughbred Basic Developer Guide is a companion to the
Thoroughbred Basic Language Reference, which contains full
descriptions of Thoroughbred Basic directives, functions, and system
variables. Both manuals are part of a Thoroughbred Software
International documentation library that includes the Thoroughbred
Basic Quick Reference Guide, the Thoroughbred Basic Installation and
Upgrade Guide, the Thoroughbred Basic Customization and Tuning
Guide, the Thoroughbred Basic Utilities Manual, and the Thoroughbred
Basic Technical Appendices.

Copyright  2014 Thoroughbred Software International, Inc.

Notational Symbols

BOLD FACE/UPPERCASE Commands or keywords you must code exactly as shown. For example,
CONNECT VIEWNAME.

Italic Face Information you must supply. For example, CONNECT viewname. In
most cases, lowercase italics denote values that accept lowercase or
uppercase characters.

UPPERCASE ITALICS Denotes values you must capitalize. For example, CONNECT
VIEWNAME.

Underscores Displays a default in a command description or a default in a screen
image.

Brackets [] You can select one of the options enclosed by the brackets; none of the
enclosed values is required. For example, CONNECT
[VIEWNAME|viewname].

Vertical Bar | Piping separates options. One vertical bar separates two options; two
vertical bars separate three options. You can select only one of the
options

Braces { } You must select one of the options enclosed by the braces. For example,
CONNECT {VIEWNAME|viewname}.

Ellipsis . . . You can repeat the word or clause that immediately precedes the ellipsis.
For example, CONNECT {viewname1}[[, viewname2] . . .].

lowercase displays information you must supply, for example, SEND filename.txt.

Brackets [] are part of the syntax and must be included. For example, SEND

[filename.txt] means that you must type the brackets to execute the
command.

Punctuation such as, (comma), ; (semicolon), : (colon), and () (parentheses), are parts
of the syntax and must be included.

1
Copyright  2014 Thoroughbred Software International, Inc.

1. Introduction

Despite the increased availability of languages like PL-1, C, and COBOL, BASIC still remains the
language of choice within the medium-sized computer business programming community. This loyalty
stems from BASIC's ability to adapt to changing needs in the business-programming environment.

Thoroughbred Basic is a Business BASIC programming language that has proven to be an excellent base
for software development across many lines of computer systems, operating systems, and business
environments. We at Thoroughbred Software International wish you success and enjoyment using
Thoroughbred Basic, and suggest that you take a few moments to become acquainted with the
Thoroughbred Basic Developer Guide.

Operating System Support: UNIX, Linux, OpenVMS, and Windows
For specific information, please contact your Thoroughbred Sales Representative.

The BASIC language

BASIC is a programming language whose development is credited to two professors at Dartmouth
College in the early 1960's. As a programming language, it is best classified as a relatively unstructured,
third-generation language.

From the beginning several companies and institutions have created their own subsets or supersets of the
original BASIC syntax. Unlike COBOL, whose national standards shortly followed its introduction,
BASIC was not standardized in any universal sense until the first American National Standard was
introduced in 1987 (ANSI X3.113-1987). By this date, there were several standard versions of BASIC
available, none of which could claim full adherence to the newly published standard.

Thoroughbred Basic

One type of standard BASIC is known as Business BASIC. This term is used to describe a few versions
of BASIC whose syntax is designed with functions and features that are important to developers of
business applications. For example, more emphasis is placed on the demands of accounting in
mathematical processes than on engineering's needs.

Thoroughbred Basic is classed among the Business BASIC versions. It offers program developers varied
syntax to address the specific needs of the business community. Thoroughbred Basic has formed the base
structure from which several business applications have been developed and within which several higher
level development tools have taken root. Today several hundred vertical accounting applications, multiple
database management systems, varied office automation products, and a fourth generation language are
available, all built around Thoroughbred Basic.

Thoroughbred Basic is available on over seventy lines of hardware. The options range from single-user
MS-DOS applications on a PC to several hundred users on multiple-CPU and RISC architecture systems.
The fact that common syntax is used across multiple operating systems and hardware environments
allows the software developer to build and maintain applications that span many types of systems. These
products can be installed and run successfully and efficiently on almost any standard hardware system.

2
Copyright  2014 Thoroughbred Software International, Inc.

Overview of this manual

Although Thoroughbred Basic uses English syntax statements, there are still some rules of grammar,
which must be understood in order to program successfully. This manual is designed to help you
understand the grammar, syntax, and constructs of Thoroughbred Basic and to act as a quick reference
guide for experienced programmers.

The following list outlines the information covered in each section of the Thoroughbred Basic Developer
Guide.

Data Representation begins with some simple definitions, which are
necessary to fully understand the language syntax. You
will learn the difference between a numeric, a string, and
arrays as used in Thoroughbred Basic.

Program Control discusses the concepts of:

• Program flow.

• What constitutes a task.

• The subroutine-like concept called public programs.

• Ghost tasking, which is similar to a
terminate-and-stay-resident (TSR) routine under
DOS or a background task under UNIX.

• The use of Thoroughbred Basic Windows within a
program to allow pop-up menus, pull-down screens,
and segmentation and overlap of screens within
screens. Thoroughbred Basic Windows can make
terminal interaction very impressive and easy to use.

In addition, this section discusses the error processing
capabilities available in Thoroughbred Basic to allow the
developer to handle errors as they are detected during
operation. The options that are available in each
situation are also discussed.

Input/Output Processing describes what channels of communication are offered
by Thoroughbred Basic to and from floppy disks, hard
disks, the monitor, terminals, printers, and general
communication ports.

You are shown the different data file types available
with Thoroughbred Basic that allows you to save and
retrieve data to and from storage media in a variety of
ways. You learn how to define the different data file
types, how each is best used, and the restrictions or
limitations of each.

3
Copyright  2014 Thoroughbred Software International, Inc.

Thoroughbred Dictionary-IV Interface discusses how Thoroughbred Basic can make use of
resources defined in Dictionary-IV. Briefly, data
dictionaries represent a concept that evolved from early
database management systems. They provide a
system-wide backbone of "maps" showing:

• The relationship of one piece of data to another.

• The interfaces to system peripheral devices like
terminals and printers.

• The interfaces to screens, menus, reports, and other
data presentation tools.

These maps are separate from the actual data they
describe. This allows the developer to change a map
without changing the actual data, or to change data
without changing the map. Thoroughbred Dictionary-IV
is bundled with Thoroughbred Basic. A Dictionary-IV
Reference Manual is available under separate cover.

Thoroughbred Basic Language Overview introduces Thoroughbred Basic directives, functions,
and system variables. A quick reference provides syntax
and brief descriptions of each language statement. For
more detailed information on directives, functions, and
system variables, please refer to the Thoroughbred Basic
Language Reference.

For more information on the Thoroughbred Basic development environment please refer to the
Thoroughbred Basic Utilities Manual. This manual describes how to use Thoroughbred Basic utilities.
For more specialized information on technical issues, please refer to the Thoroughbred Basic Technical
Appendices.

Thoroughbred Basic is available in a variety of operating system environments including UNIX,
MS-DOS, Microsoft Windows, BSD, Ultrix, and OPEN VMS. Although the language syntax is portable
across all environments, subtle differences exist in those directives and functions that are operating
system dependent. Those differences are described in the descriptions of directives, functions, and system
variables in the Thoroughbred Basic Language Reference.

We suggest that you read the chapters on Data Representation, Program Control, and Input/Output
Processing to develop a good base of understanding of Thoroughbred Basic. You can then refer to the
descriptions of directives, functions, and system variables as you begin programming. The additional
chapters provide a more in-depth understanding of Thoroughbred Basic and more insight into the
techniques available for problem solving.

4
Copyright  2014 Thoroughbred Software International, Inc.

On-line help

Thoroughbred Basic provides on-line help. To use on-line help, you must have Dictionary-IV and the
Developer Reference module installed.

On-line help contains extensive information on a variety of subjects, including syntax examples for
directives and functions, information on Dictionary-IV API Services and product release notes, as well as
specifications for some technical features not detailed in the manual.

To select the on-line help system, enter /8H at any Dictionary-IV menu, or enter RUN "8H" from
Thoroughbred Basic Console Mode. From any location in the on-line help system, you can press the F6
key for help or the F4 key to exit.

5
Copyright  2014 Thoroughbred Software International, Inc.

2. Data Representation

This chapter describes the various ways to comprehend and represent information.

Constants versus variables

Data can be viewed from two distinct perspectives and within those perspectives there are several
variations. The first approach to data representation categorizes the data as either a constant or variable.
Constants are fixed values and cannot change. Variables are named values that can change.

Examples of constants

"Hello" a string constant of 5 characters containing the ASCII print characters for the word Hello

"" a string constant of 0 characters (null)

QUO a string constant containing the double-quote character (")

123 a numeric constant with the integer value 123

123.456789 a numeric constant with the fixed point value 123.456789

.123E-110 a numeric constant with the floating-point value (scientific notation) .123 to the -110
power of 10

20 a hexadecimal string constant whose value is equivalent to a decimal 32 or a space
character

Examples of variables

A$ a string variable with a possible length of 0 - 65000 bytes

A a numeric variable with the ability to hold numbers from +/-.99999999999999E-114 to
+/-.99999999999999E+141 with up to 14 digits of precision

A% a numeric integer variable with the ability to hold integers from -2147483648 to
+2147483647

DEC(A$) a numeric variable representing the decimal equivalent of the binary value in A$

BIN(A,5) a string variable representing the binary equivalent of the numeric variable A in 5 bytes

The above examples do not demonstrate all possibilities. Other options appear in Chapter 6,
Thoroughbred Basic Language Overview.

6
Copyright  2014 Thoroughbred Software International, Inc.

Conventions for naming variables

The rules governing the names of variables are:

• String variables all end in a dollar sign ($).

• Numeric integer variables all end in a percent sign (%).

• Numeric variables do not require a suffix.

• Long variable names allow up to 33 characters in the name (exclusive of the dollar sign for string
variables or the percent sign for integer variables).

• Long variable names must start with an uppercase alphabetic character (A-Z). The remaining
characters can be any combination of uppercase alphabetic characters, numeric characters, and the
underscore character. For example:

THIS_IS_A_VALID_STRING_NAME$
THIS_IS_A_GOOD_NUMERIC_NAME
U_CAN_USE_NUMBERS_2_IN_NAMES

Short variable names contain 1 or 2 characters (exclusive of the dollar sign for string variables). The name
must start with an uppercase alphabetic character (A-Z) and if a second character is needed, it must be
numeric. (Integer variables, e.g. C%, are not available in release levels prior to 8.1.B2.) For example:

• A$, A1$, A2$, A9$, Z9$ are all valid string variable names

• A, A1, A2, A9, Z9 are all valid numeric variable names

• A%, A1%, A2%, A9%, Z9% are all valid integer variable names

Numeric versus string

The second approach to data representation differentiates between numeric and string. The above
examples of constants and variables indicate which is numeric and which are string data. There are very
few instances where a constant is required and a variable not allowed, or the reverse. The more significant
differentiation occurs between numeric and string data.

Numeric data

Numeric data is a term used to describe numbers as opposed to alphabetic or alphanumeric data. In
mathematics, the term decimal refers to base-10 numbers, binary to base-2, octal to base-8, hexadecimal
to base-16, etc.

7
Copyright  2014 Thoroughbred Software International, Inc.

In Thoroughbred Basic, as in most versions of BASIC, decimal is the only valid form for numeric data.
Binary, octal, and hexadecimal numbers are treated as string data. Numeric data can contain up to 14
digits and are limited to the range of numbers between +/- .99999999999999E-114 and
+/-.99999999999999E+141. Valid numbers may contain the following:

• Digits 0 through 9.

• None or one decimal point.

• A leading + or - (+ is assumed if no sign is shown).

• The letter E followed by an integer value in the range of -114 to +141 (+ is assumed) representing a
power of 10.

Commas are not valid in numbers. When converting a string to numeric, Thoroughbred Basic ignores
spaces in the string. The following list shows some examples of valid numbers:

123.45
- 123.45E+0
.12345E3
+12345

The descriptions listed below are arranged in approximate ascending order. Each description is a subset of
the next or is of equal or lesser (not greater) importance.

Numeric Data Types

Integer a positive or negative, real, base-ten number with no significant digits to the right
of any decimal point. The range of integers is +99999999999999 to
-99999999999999.

Fixed Point a positive or negative, real, base-ten number with significant digits to the right of
a decimal point. The range of fixed-point numeric data is +/-0.99999999999999
to +/-99999999999999.0.

Floating Point a positive or negative, real, base-ten number that is represented in exponential
form: 12345 is represented as .12345E+5 and .00001 is represented as .1E-4. The
range for floating point is +/-0.99999999999999E-114 to +/-
0.99999999999999E+141.

Array a table of numeric data (Integer, Fixed Point, or Floating Point) with up to 3
dimensions, requiring integer subscripts to access the individual table entries.
The maximum number of total entries in the array cannot exceed 65000 entries.
In an I/O directive, you can use [ALL] as the subscript of an array to specify all
elements of the array.

Numeric Expression a numeric function, numeric constant, or arithmetic expression whose result is
numeric data. Unless otherwise noted, numeric expressions can be used wherever
numeric data are required.

8
Copyright  2014 Thoroughbred Software International, Inc.

Numeric data can be manipulated with mathematical statements and arithmetic operators. The following
directives control the environment in which numeric data are manipulated. These directives also control
the number of significant digits to be maintained when numeric data are moved or formatted into a string
for printing.

Numeric Data Directives

PRECISION This directive determines the number of significant digits to be maintained to the
right of the decimal point. PRECISION 4 sets that number to 4. The default is 2
and is set a Thoroughbred Basic program performs a clearing function (e.g.,
LOAD, END, CLEAR, or BEGIN). The range of valid values is numeric
integers from 0 through 14.

FLOATING POINT This directive has the same effect as PRECISION 14.

Rounding

Rounding occurs whenever numeric data are moved or manipulated in such a way that the resulting
numeric variable contains fewer significant digits than the numeric data it is to contain. A simple way to
show this to enter the following sequence of commands in Thoroughbred Basic Console Mode:

PRECISION 2
PRINT .05*.1
PRECISION 3
PRINT .05*.1

The first PRINT statement produces .01 (the result of .05*.1 rounded to 2 decimal places). The second
PRINT statement produces .005 (displaying 3 decimal places). The actual arithmetic operation is
performed using the number of significant digits actually present in the numeric values, with the result
adjusted based on PRECISION and FLOATING POINT settings.

Order of Precedence

Numeric data are worked upon through the use of numeric functions and operators. Arithmetic operations
are performed in the following order:

1 Parentheses, innermost first

2 Then left to right, all exponential

3 Then left to right, all multiplication and division with equal priority

4 Then left to right, all addition and subtraction with equal priority

5 Then left to right, all relational operators (< >, =, <=, >=, <, >, LIKE) with equal priority

6 Then left to right, all logical operators (AND, OR) with equal priority

9
Copyright  2014 Thoroughbred Software International, Inc.

All operators are described below:

Operators in Conditions

= Equal to

- Subtraction or negative value

> Greater than

< Less than

>= or => Greater than or equal to

<= or =< Less than or equal to

<> or >< Not equal to

LIKE string Partial equality

() Grouping

AND Logical AND (both true)

OR Logical OR (either true)

LIKE wildcards

* Matches any characters (0 or more)

? Matches a single character

[A-Z] Matches a range for a single character

[AGCF] Matches a single character in the list

[wildcard] Matches the wildcard character

Operators Used in Arithmetic Functions

() Parentheses to indicate priority of calculations

^ or ** Exponentiation (requires a positive integer exponent)

* Multiplication

/ Division

+ Addition or positive value

- Subtraction or negative value

10
Copyright  2014 Thoroughbred Software International, Inc.

Boolean Operators

Relational Operators If the relation is true, the result is 1; otherwise, the result is 0.

Logical Operators The result of AND is 0 if either or both of its operands are 0; otherwise,
the result is one 1. The result of OR is 0 if both of its operands are 0;
otherwise the result is 1. If more than one logical operator appears in a
statement, and Thoroughbred Basic determines the result after evaluating
the first operand, Thoroughbred Basic skips the evaluation of the second
operand.

Example

00010 LET A=0, B=0, C=5, D=-4, E=7, F=2
00020 LET VALUE=A+C OR B ;VALUE IS 1
00030 LET VALUE=A AND B ;VALUE IS 0
00040 PRINT 1 + (C AND E) ;PRINTS 2
00050 LET VALUE=A=B ;VALUE IS 1
00060 PRINT 10 + (D>F OR E>C) ;PRINTS 10
00070 IF A THEN GOTO 10
00080 LET VALUE=A$ LIKE "?PSD"

Any numeric syntax that is accepted between IF-THEN can be used as a valid numeric expression
anywhere a number is expected or allowed.

Examples of Numeric Functions

ABS(n) the absolute value (positive) of a number, n

CDN the current system date and time in SQL date numeric format

INT(n) the integer portion of a number, n

FPT(n) the decimal portion (fractional part) of a number, n

LEN(str) the length, in bytes, of a string, str

MOD(n1, n2) the remainder obtained when a number, n1, is divided by n2

NUM(str [,ERR=line-num]) converts a string to numeric data with error detection if not truly numeric
(spaces are ignored)

POS(str1 operator str2) finds the character position within a string, str2 based on the operator
(e.g., =,<) and str1

RND(n) a random number from 0.0 to 1.0 based on seeding specified by a
number, n

SIN(n) returns the trigonometric sine of angle n (n is in radians)

11
Copyright  2014 Thoroughbred Software International, Inc.

This is not a complete list, but it gives an example of the diversity of numeric functions available within
Thoroughbred Basic. Besides those mentioned above, the programmer could define additional numeric
functions. For more information please refer to the description of the DEF FN directive.

String data

String data are all data that are not numeric data. A string variable is limited to a total length of 65000
bytes. Each byte in the string data can contain any of the 256 character possibilities. Caution should be
taken, however, when dealing with string data that contain the following:

• Unprintable characters

• Special file terminators

• Record terminators

• Field separators

• Communication sensitive characters

In general, string data contain characters ranging from 20 (hexadecimal for a space) through $7E$.
This represents all numeric, upper and lowercase alphabetic, and the standard English punctuation
characters.

String data is the only valid format for the communication of data. Numeric data must be converted to
string data format before it can be printed. In many cases, numeric data must also be converted to string
data before it can be stored or saved.

The descriptions below are arranged in approximate ascending order. Each description is a subset of the
next or is of equal or less (not greater) importance.

String Data Types

Substring a portion of a string variable using the format:

STRING$ (starting-byte [,number-of-bytes])

If the number-of-bytes is not specified, the substring ends with the last byte of
the string.

Array a table of string data with up to 3 dimensions. Array specifications require integer
subscripts to access the individual table entries. Each table entry can vary in
length, and the array can contain up to 65536 total entries. In an I/O directive,
you can use [ALL] as the subscript of an array to specify all elements of the
array.

12
Copyright  2014 Thoroughbred Software International, Inc.

String Expression a concatenation of string variables and string constants to form a single series of
characters. Unless otherwise noted, string expressions can be used wherever
string data is required. For example:

TOWN_NAME$ + "," + STATE_ABBREVIATION$ +
STR(ZIP_CODE:"BB00000")

The + (plus sign) is the concatenation character. The example above creates a
single string containing the format for the last line of a street address. STR
converts numeric data to string data format and will be covered later.

Besides the concatenation shown above, string data can be presented in a variety of forms through the use
of several logical functions. As with numeric data, the programmer also has the ability to define specific
string functions within a program (see the description of the DEF FN directive). Add to these the large
variety of standard system variables in string data format, and it becomes easy to see that Thoroughbred
Basic offers an excellent range of tools for program development. Below are several examples of string
functions and system variables, which are in string data format.

Examples of String Functions

AND(str1,str2) returns the logical AND of all bits in two strings, str1 and str2, bit for bit

BIN(n1,n2) converts a base-10 decimal number, n1, into a base-2 binary number in the number of
bytes specified by n2

CVT(str,n) edits a string, str, based on the value in n to do such things as suppress extra spaces
and tabs, align left or right, change uppercase to lowercase (or the reverse), and
several other text editing functions

DAY returns the system date in the format MM/DD/YY or a different format depending
upon system specification for the installation

IOR(str1,str2) returns the logical OR of all bits in two strings, str1 and str2, bit for bit

NOT(str) returns the logical inverse of a string, str, bit for bit

STR(n:str) returns a number, n, in string data format according to the contents of the editing
mask contained in a string, str

SYS returns the coded value for the release level of Thoroughbred Basic and its operating
system environment

The proper understanding of numeric and string variables and functions can simplify data manipulation
and presentation. For example, a common task is using the numeric function TIM to display the system
time in the format HH:MM:SS. TIM is in 24-hour and decimal hour format. The following sequence of
instructions provides the desired result:

PRECISION 6
PRINT STR(INT(TIM):"#0") + ":" + STR (INT (FPT (TIM) *60):"00")
+":"+STR(INT(FPT(TIM*60)*60):"00")

13
Copyright  2014 Thoroughbred Software International, Inc.

If TIM is equal to 8.331667 then the PRINT statement displays 8:19:54 when executed. The logic of this
string expression is:

• The INT (integer) of TIM (time) is the hour number.

• The FPT (fractional part) of TIM (time) is decimal hours; multiplied by 60 gives minutes, and the
INT (integer) of that function gives the whole minutes.

• TIM multiplied by 60 gives minutes and decimal minutes.

• Taking FPT of TIM*60 (the decimal minutes) and multiplying it by 60 gives seconds and decimal
seconds.

• The mask used for the hours is "#0" which suppresses leading zeros except the least significant one.

Converting string data to numeric data

There are a few commands used to convert string data to numeric data, depending on the resulting format
desired. The most often used method involves the numeric function NUM. This provides the bridge to
convert numbers in string data format into their base-10 equivalent numeric data. In case the string data
contains anything other than numbers, an error branch is provided in the NUM Function to catch the
problem before proceeding. For example:

LET NUMBER_BUCKET = NUM(STRING_DATA$, ERR=line-num)

This syntax executes the next sequential statement if no error existed or it goes to the line-number
specified (without changing the numeric variable NUMBER_BUCKET) if there are any illegal
characters in the string variable STRING_DATA$. Below are additional functions that can be used to
convert string data to numeric data in a variety of formats:

ASC (str [,ERR=line-num]) returns the decimal ASCII value of the first character in a sting, str.

CDN returns the current system date and time in SQL date format. January 1,
0001 returns a 1; the same day at noon returns 1.5; BC dates return
negative values.

Converting numeric data to string data

This type of conversion offers a great deal of creativity in determining the look of the final string data
result. Numeric data does not contain all of the information necessary to relay its intent or purpose. For
example, numeric data may represent dollars and cents, but the dollar sign is not a valid character in
numeric data. The example shown earlier which represents the numeric function TIM, does so in a more
readable format of hours, minutes, and seconds, using the concept of masking.

14
Copyright  2014 Thoroughbred Software International, Inc.

Masking

Masking provides an automatic process by which data can be either edited or presented. The :verification
option of the INPUT Directive is an example of using a mask to help verify or control data being taken
from an outside source into a program. For complete information on this particular option refer to the
description of the INPUT directive.

Using masking to present data is probably the most common method of converting numeric data into
string data. The STR function is a good example of this method:

LET ITEM_TO_BE_PRINTED$ = STR(n:mask)

The mask must be a string expression. Valid characters within the mask are:

0 Zero specifies that a numeral in this position be printed, even if it is a zero. For example:

STR(0123456.7890:"00000000.000") C> 00123456.789

As the leading or trailing character in a mask, indicates that zeros in these positions should be
replaced with a space. For example:

STR(0123456.7890:"#000000.000#") C> 123456.789
STR(0123456.7890:"#00000.0#") C> 123456.79

Note: Normally, a mask, which is too small to contain the number rounds the decimal portion but
prints, the full integer size, unmasked.

* Specifies that asterisks replace leading zeros in these positions. For example:

STR(0123456.7890:"****000000.0###") C> ****123456.789

$ Indicates that leading zeros in these positions should be replaced with a space except the least
significant zero, which should be replaced with a dollar sign. The first example shows a floating
dollar sign and the second indicates a fixed-position dollar sign:

STR(0123456.7890:"$$$$$$$$0.000") C> $123456.789
STR(0123456.7890:"$#######0.000") C> $ 123456.789

, Indicates that a comma should be placed in this position if there are any significant digits to the left of
this position. For example:

STR(0123456.7890:"###,###,##0.00##") C> 123,456.789
STR(0123456.7890:"###,###,##0.000,") C> 123,456.789,

. Indicates the relative position of the decimal point in the mask and the position where the decimal
point is to be placed. For example:

STR(0123456.7890:"###,###,##0.000") C> 123,456.789
STR(0123456.7890:"###,###,##0.") C> 123,457. (rounded)

15
Copyright  2014 Thoroughbred Software International, Inc.

() Enclosing the mask in parentheses causes the resultant string to be enclosed in spaces if the numeric
data is positive or unsigned and enclosed in parentheses if the numeric data is negative. If the number
is negative, space characters between the ((left parenthesis) and the - (minus sign) or first significant
digit are removed. For example:

STR(0123456.7890:"(###,###,##0.000)") C> 123,456.789
STR(-0123456.7890:"(###,###,##0.000)") C> (123,456.789)
STR(-0123456.7890:"(-###,###,##0.000)") C>(-123,456.789)

Starting with Thoroughbred Basic 8.3.1, floating parentheses are available. For example:

STR(-12.34:"($###,###,##0.00)") C> ($12.34)

+ Causes a plus sign to be placed in the position indicated if the number is positive and a minus sign if
the number is negative. The plus sign may be floated up to the first significant number. For example:

STR(0123456.7890:"+###,###,##0.000") C> +123,456.789
STR(0123456.7890:"###,###,##0.000+") C> 123,456.789+

- Causes a minus sign to be placed in the position indicated if the number is negative and a space if the
number is positive. The minus sign may be floated up to the first significant number. For example:

STR(-0123456.7890:"-###,###,##0.000") C> -123,456.789
STR(-0123456.7890:"###,###,##0.000-") C> 123,456.789-

You can also use minus signs to separate groups of numbers, for example:

STR(-123456789:"000-00-0000") C> 123-45-6789

B Indicates that a blank is to be inserted into the resultant string at this position. Telephone numbers
are good examples of this:

STR(8005551212:"000B000B0000") C> 800 555 1212

For a slightly unusual approach, note the following combination of masking characters:

STR(-1*8005551212:"(000)B000-0000") C> (800) 555-1212

DR Indicates a debit. The characters CR are inserted in the resultant string if the numeric data is
negative and DR is inserted if the numeric data is positive. For example:

STR(0123456.7890:"DR##,###,##0.000")C> DR 123,456.789
STR(0123456.7890:"###,###,##0.000DR") C> 123,456.789DR
STR(-0123456.7890:"###,##0.000BDR") C> 123,456.789 CR

CR Indicates a credit. The characters CR are inserted in the resultant string if the numeric data is
negative and two spaces are inserted if the numeric data is positive. For example:

STR(0123456.7890:"###,##0.000CR") C> 123,456.789
STR(-0123456.7890:"###,##0.000CR") C> 123,456.789CR

16
Copyright  2014 Thoroughbred Software International, Inc.

Any other character prints the character in the position indicated. For example:

STR(91234567890:"FSNB0NB000000B0000") C> FSN 9N 123456 7890

Other characters used in masks

Since the mask is enclosed by " " (two double quotes), it cannot contain a double quote character. For
masking, and for string data in general, there are special characters, which can be used to facilitate
building string data.

QUO This is the double quote character (22 in ASCII) and should be used to insert a double quote in
a string. For example:

PRINT "ABC" yields ABC
PRINT QUO + "ABC" + QUO yields "ABC".

SEP This is the field separator character that is used in data record formats to separate one field from
another. It is normally a $8A$ character, but may vary for certain operating system environments.
Use of the SEP instead of a hexadecimal constant ($8A$) allows programs to be insensitive to
such operating system changes.

ESC This is the escape character for the system, and is normally a $1B$ value. For example:

LET A1$ = ESC + "6" + BIN(31,1)

This places the hexadecimal value $1B361F$ in A1$, which is the sequence of codes to change
the color configuration on a monitor to color 31 (high intensity white characters on blue
background). This, too, may vary from one operating system environment to another. Use of ESC
helps avoid system dependency.

When data is too large for the mask

If the numeric data is too large for the mask specified, an attempt is made to salvage the numeric data.
The integer portion of the numeric data is printed with no masking. The decimal portion of the numeric
data is rounded, if necessary, to the number of decimal positions in the mask. For example:

STR(0123456.7890:"#,##0.0#") C> 123456.79

The decimal portion is rounded to the number of places in the mask, so .7890 becomes .79 in this case.

17
Copyright  2014 Thoroughbred Software International, Inc.

3. Program Control

Applications written in Thoroughbred Basic, or any other programming language, accomplish their tasks
through the execution of programs. These programs represent the translation of desired operations into
computer-recognizable commands. The programming language attempts to provide an easy path for the
human programmer to tell the computer system just what is needed and how it should be accomplished.
Programs are stored as files on disk, just as data is stored, but are maintained through the use of the
Thoroughbred Basic Interpreter rather than a file maintenance application system.

The creation, maintenance, and actual execution of these programs are referred to as program control.
This chapter discusses how to build a program, how to save it, how to change it, and some general
understanding of what happens within execution of the program (e.g. what gets done first, how does the
programmer control execution processes, and so on).

Sequence within programs is maintained through the use of program line numbers. These numbers range
from 00001 to 65534 in release levels beginning with 7.0, and from 0001 to 9999 in earlier releases.

Total program size cannot exceed 5*1024*1024 (5,242,880) bytes. Releases from 8.0 through 8.3.1 limit
total program size to 64,000 bytes. Releases prior to 8.0 limit total program size to 32,768 bytes.

Program modes

In dealing with programs, there are two major modes of operation:

Thoroughbred Basic Console Mode The program mode, which allows interactive conversation
between the programmer and Thoroughbred Basic for the
purpose of maintaining program, files.

Thoroughbred Basic Run Mode The program mode, which allows the actual Thoroughbred
Basic, programs to execute and control the interactive
conversation between the computer system and the user or
programmer.

When in Thoroughbred Basic Console Mode, executing a RUN directive places the task in Thoroughbred
Basic Run Mode. From Thoroughbred Basic Run Mode, execution of an END or STOP directive places
the task in Thoroughbred Basic Console Mode. Additionally, Thoroughbred Basic Run Mode operation
may be interrupted, placing the task in Thoroughbred Basic Console Mode, with the execution of the
ESCAPE directive or through keyboard intervention by pressing the Escape key. When Thoroughbred
Basic Run Mode is interrupted in this way, the environment within the user task is left unchanged; files
that were open are still open and variables contain the data they had at the time of interruption.

Statement labels

You can name any Thoroughbred Basic statement number with a statement label, and then refer to that
label in any directive or function where a statement number is used (except the PGM function). This
feature is generally available starting with release level 8.1B2.

18
Copyright  2014 Thoroughbred Software International, Inc.

Statement labels, like long variable names, can help to make your program more readable. Statement
labels allow you to identify and refer to routines by name rather than by line number. For example, if
your date routine starts at line 1000, you can name this line with a label, such as SETUP_DATE, and
then refer to this label anywhere in the program that references line 1000. Instead of using GOSUB 1000,
you can use GOSUB SETUP_DATE. Label names also provide improved performance over line
numbers when a program branch uses the label name.

To be able to reference a label name in a Thoroughbred Basic statement, the label must be declared
somewhere in the program. Label names must be unique; a label name can be declared only once in a
single program.

Any Thoroughbred Basic statement number can contain a label declaration as shown in the following
syntax:

linenum lblname: directive

linenum is a valid Thoroughbred Basic line number.

lblname is the name of the label followed by a colon. The label name must begin with an uppercase
letter, can be up to 32 characters long, and can contain any combination of uppercase letters
(A-Z), numbers (0-9), and _ (the underscore character).

directive is any valid Thoroughbred Basic directive.

Example:

09500 ERROR_IN_OUTPUT: PRINT(EIO_ERROR_MSG$)

The label declaration is handled as an integral part of the line number, must immediately follow the line
number, and cannot be declared in the middle of a statement.

When referencing statement numbers in Thoroughbred Basic commands, either the line number or the
label name can be used in any syntax that refers to a Thoroughbred Basic statement number. For example,
either a line number or a label name can be used for line-ref in the GOTO line-ref syntax.

If you reference a label name that has not been declared, or declare a duplicate label name, an ERR=21
results. If you reference an undeclared label name in LIST or DELETE, an ERR=45 results.

Label names are stored in the program symbol table (see the PFL and PFP functions).

Thoroughbred Basic Console Mode

This is generally the starting point for all programming activity. Thoroughbred Basic Console mode can
be attained in several ways:

• The IPLINPUT file, which is part of environment control, can designate that a task is to begin in
Thoroughbred Basic Console Mode.

• The programmer can select the entry on the Thoroughbred Basic Utilities Menu, which places the
task in Thoroughbred Basic Console Mode.

19
Copyright  2014 Thoroughbred Software International, Inc.

• A program may exit into Thoroughbred Basic Console Mode by executing an END or STOP
directive.

Once in Thoroughbred Basic Console Mode, you may work with whatever program is currently in your
user task area, you can LOAD a different program and work on it, you can build a new program from
scratch, or you can enter Thoroughbred Basic Console Mode directives to perform specific functions
interactively.

To leave Thoroughbred Basic Console Mode and return to the operating system you can type RELEASE
and press the Enter key.

Entering Program Code

Communication with Thoroughbred Basic from Thoroughbred Basic Console Mode is accomplished by
entering a command terminated with a carriage return. If a number precedes the command, it is
interpreted as a line of Thoroughbred Basic program code and is checked for proper syntax and placed in
the user task program area. If a number does not precede the command, Thoroughbred Basic attempts to
execute the command directly rather than assume it is to be placed in the user task program area.
Although Thoroughbred Basic does not require spaces when entering commands, care should be taken to
avoid misinterpretation, especially in long variable names.

Example:

Entering 0100 PRINT DAY adds line 0100 to the user task program space, writing over any previous line
0100, containing the PRINT directive as shown.

Entering PRINT DAY causes Thoroughbred Basic to print, on the next line of the terminal, the contents
of this task's DAY system variable (e.g. 10/25/03).

Entering 0000 PRINT DAY causes Thoroughbred Basic to treat this command as if it had no line
number. Line number 0000 indicates a Thoroughbred Basic Console Mode command. If a syntax error
were made in a Thoroughbred Basic Console Mode command, Thoroughbred Basic displays the error
using line number 0000. For example:

Entering PIRNT DAY results in the following response from Thoroughbred Basic:

*ERR V
0000 PIRNT DAY

indicating that Thoroughbred Basic was unable to understand this statement, and that the first point of
difficulty was at the I in PIRNT. Although Thoroughbred Basic executes programs in line number
sequence (unless directed otherwise), program commands need not be entered in line number order. The
line number at the beginning of the command entered determines where Thoroughbred Basic places the
program line.

Shorthand Notation

Starting with release level 8.2, a colon is now allowed to immediately follow the = to substitute the left
side of the = for the colon. For example:

LET ABC$[2]=:+"X" becomes LET ABC$[2]=ABC$[2]+"X".

20
Copyright  2014 Thoroughbred Software International, Inc.

Note: This is only a shorthand notation for input. The code still lists the expanded way.

Editing Program Code

Now that you can enter a line of program code, how do you change what you have entered?
Thoroughbred Basic offers the following ways to change programs:

• You can retype the line, which overwrites the previous contents of that line number.

• You can change the line by using the EDIT directive for a single program line number (see EDIT
line directive).

• You can change the line by using the full-screen EDIT directive (see EDIT full-screen directive),
which provides line editing with a full-screen display.

• You can change the line by using the EDITF directive, which provides full program editing using a
formatted display of the program.

• You can change the line by using Thoroughbred Source-IV, which provides program maintenance
and source control.

The single-line EDIT directive is a carry-over from older versions of comparable Business BASIC
systems and is somewhat cumbersome to use. The full-screen EDIT directive allows the use of text
editing keys to change program lines. The EDITF directive allows you to edit a formatted display of the
program and provides many helpful features, including text-editing keys, the ability to select the level of
formatting (structured or unstructured) and an interface to the Thoroughbred Basic on-line documentation
system. With each increase in capability from EDIT line to EDIT full-screen to EDITF, there is a
corresponding increase in the amount of memory used and you may also perceive some difference in the
speed of operation.

Statement Stepping

Thoroughbred Basic offers additional interactive editing and debugging capabilities available from
Thoroughbred Basic Console Mode. They are . (period), ; (semicolon), and ;n. These options are
discussed below:

• Type . and press the Enter key. Thoroughbred Basic displays the next line of program code to be
executed. The . also finishes any line that has been semicoloned into. This feature is generally
available starting with release level 8.0.

• Type ; and press the Enter key. Thoroughbred Basic displays the next directive to be executed. The
currently displayed line or directive is executed. This feature is generally available starting with
release level 8.2.

• Type ;n, where n is the number of directives you want to trace, and press the Enter key.
Thoroughbred Basic lists the first directive to be executed, then executes the directive portion that is
placed between the semicolons on the line of code. It repeats this procedure n times.

21
Copyright  2014 Thoroughbred Software International, Inc.

These debugging operations function even within public programs, a feature not normally found among
comparable BASIC languages. When coupled with PRM LONG-PROMPT in the IPLINPUT file (see
System Files in the Thoroughbred Basic Customization and Tuning Guide), which places the name of the
program and the last error code encountered in the prompt, debugging becomes much easier.

After the execution of each numbered statement, you can look at the value of variables as the result of
execution. When you are in public programs, the variables you see are those of the public program (see
Public programs later in this chapter).

Note: These debugging options do not function on encrypted programs.

Saving Program Code

When you are finished with a program, the next logical thing to do is to save the program on disk. This is
accomplished with the SAVE directive to simply save the program, or the PSAVE directive, which
provides for saving the program with an encryption technique that does not allow anyone else to look at
program lines above line number 100 unless they know the password that you used when executing the
PSAVE directive. Thoroughbred Basic provides the ability to protect the source of your programs. The
PSAVE directive is an example. Additional protection features are discussed under the ENCRYPT
directive and the SSN system variable.

Long Variable Names

Starting with Thoroughbred Basic 8.0 which offers long variable names instead of the well-known short
variable names such as A1 or D1$, you have the option to choose which mode you are in when entering
lines of program code in Thoroughbred Basic Console Mode.

In the IPLINPUT file, you can enter the PRM SHORTVAR or PRM LONGVAR statement, which
establish the default program control environment for syntax checking. If PRM SHORTVAR was set as
the default, then long variable names and Thoroughbred Basic syntax that was not available before release
level 8.0 causes syntax errors when entered in Thoroughbred Basic Console Mode as lines of program
code. PRM LONGVAR permits the entry of long variable names. For more information on these PRM
statements, please refer to the Thoroughbred Basic Customization and Tuning Guide.

This default setting from the IPLINPUT file can be overridden by a Thoroughbred Basic Console Mode
command. Thus, entering SHORTVAR in Thoroughbred Basic Console Mode changes the syntax
checking facility of Thoroughbred Basic to allow only short variable names. This setting can be changed
back to long variable name syntax and pre-8.0 release level syntax with a LONGVAR directive, whether
in Thoroughbred Basic Console Mode or Thoroughbred Basic Run Mode.

A more complete description of these two directives is contained in the LONGVAR and SHORTVAR
entries in the Thoroughbred Basic Language Reference.

Program Code Syntax

Now that you know how to enter lines of program code, modify them, and save a program, let's spend
some time on the actual commands within those lines of code. First, a program line can contain one
command or several commands. Individual commands are separated by the ; (semicolon). The
Thoroughbred Basic term for a command is a directive. A directive tells Thoroughbred Basic to do
something, go somewhere, test something, read or write something, and so on.

22
Copyright  2014 Thoroughbred Software International, Inc.

All programs need data, and Thoroughbred Basic provides for data definitions in a variety of ways. The
most complete definition of the various types is covered in the chapter on Data Representation. In
general, you may have numeric or string constants, numeric or string named-variables, system defined
variables, system defined functions, and programmer defined functions. As with most versions of the
BASIC language, it is not necessary to define named-variables in advance; their usage is normally
sufficient to define them. You may choose to define them in advance and preset their value with either a
LET or DIM directive, which represent the commands to assign values to variables or dimension those
variables to specific, sizes and values.

Communication

Thoroughbred Basic communicates with other tasks or devices such as a disk or terminal keyboard
through channels, which it opens (with an OPEN directive), closes (with a CLOSE directive), listens to
(with EXTRACT, FIND, FINPUT, INPUT, or READ directives), and talks to (with PRINT and
WRITE directives).

The purpose of these communications is to transfer data from the program to somewhere, or from
somewhere to the program. All data is transferred into named variables or out from named variables or
constants. Channel 0 (zero) is reserved for special communications. In the case of a regular task, this is
the channel for normal keyboard and terminal communications. For a program being run as a ghost task,
this channel is the inter-task communication channel for talking with other programs and other tasks (see
Ghost tasks later in this chapter).

Each task or device has a name. Disks are named differently from printers, which have different names
from other tasks, which have different names from files. The System Files chapter in the Thoroughbred
Basic Customization and Tuning Guide discusses the IPLINPUT file, which establishes the names for
disks, printers, tasks, and other devices.

Files are contained on disk, and their names are kept in what is called a logical disk directory. This
provides the capability, within Thoroughbred Basic, to have more than one logical disk per physical disk,
and to separate files into logical groups by placing them in one logical disk directory or another. By
convention, Thoroughbred Basic utilities are located on logical disk directory 0, which is called by the
device name D0, and referred to by the directory name of UTIL or UTILS. Files represent the only
storable method for keeping data. There are several different file types, each representing a different
method of data organization or access (remember that programs are maintained as files). Further
discussion of the different types of tasks, devices, or files is contained in the chapter on Input/Output
Processing.

Before leaving our discussion of Thoroughbred Basic Console Mode, it should be noted that some
directives are Thoroughbred Basic Console Mode-only commands, and some directives are only available
in Thoroughbred Basic Run Mode. These restrictions are noted in the Thoroughbred Basic Language
Reference.

Thoroughbred Basic Run Mode

This is the mode used to execute programs. Thoroughbred Basic Run Mode can be launched in several
ways:

• The IPLINPUT file, which is part of environment control, can designate that a task is to begin with a
specific program, which is run when the task is initialized.

23
Copyright  2014 Thoroughbred Software International, Inc.

• The programmer can enter the RUN directive from Thoroughbred Basic Console Mode, which places
the task in Thoroughbred Basic Run Mode and executes the program in user task memory.

• The programmer, or a program, can issue a CALL directive, which places the task in Thoroughbred
Basic Run Mode within a public program.

In Thoroughbred Basic Run Mode, communication between Thoroughbred Basic and the
terminal/keyboard are terminated, and the program that is running now has control over those lines of
data transfer. Execution of the program specified by the RUN directive begins at the lowest line number
in the program (lowest possible line number is line number 00001).

Unless program execution is transferred to another line with one of the transfer directives (such as GOTO
or GOSUB) or conditional transfers (such as SETERR, SETESC, DOM=, ERR=, and so on), the next
sequential line number is executed after the first line number is finished. Line numbers need not start with
1 and need not follow a specific number differential. It is not unusual for programs to start with 10,
incrementing each succeeding line by 10. This provides for several line numbers between the existing
ones should additional program code need to be inserted. It is not unusual, either, for a programmer to
follow a simple numbering scheme such as:

00010-00099 Program description area
00100-00999 Data initialization area
01000-05999 Program mainline
06000-07999 Major subroutines
08000-08999 Error processing routines
09000-09999 Program exit logic

Thoroughbred Basic imposes very few restrictions on structure, but offers several tools to help construct
good programming structure and conventions. The next few topics show how programs can be grouped,
constructed, and organized to provide more performance with less program space and greater
maintainability; all desirable qualities in programs.

Mainline routines, subroutines, and functions

When building a program and generating lines of program code, as long as each line or group of lines of
code are unique, the fastest and easiest way to create the necessary code is what we refer to as straight
mainline. This is the simple approach of sequentially coding line after line until the desired result is
accomplished.

In a more organized approach, however, we find the need to repeat some operations more than once. The
straight mainline method then ends up with redundant code that takes more time to write, more space to
hold (in memory and on disk), and possibly more time to execute. When a simple loop is desired, that is
conditioned on a specific number of occurrences or reaching a specific set of conditions, it can be coded
using a FOR/NEXT directive or the WHILE/WEND directive. If we want to perform some operation,
whether it is a FOR/NEXT, WHILE/WEND situation or not from varying points in our mainline
program, we need to employ another approach.

24
Copyright  2014 Thoroughbred Software International, Inc.

Thoroughbred Basic provides the ability to execute a group of program code from somewhere else and
return back when finished. This type of program structure is normally referred to as subordinate routines,
or subroutines. The syntax structure simply involves the execution of a GOSUB directive to get to the
subroutine's starting line number and the execution of a RETURN directive, which returns execution to
the next directive after the GOSUB directive. The subroutine itself is no different from other program
lines with the exception of the RETURN directive at the end of its group of program lines.

If and when a particular operation becomes needed by more than one program at the same time, it is not
necessary to duplicate the subroutine in each program. The logical approach may be to break out the
necessary lines of code into a separate program and make that program available to anyone who wants to
use it. This tactic involves the use of public programs.

Public programs

Public programs look very much like regular programs. In fact, it is possible to create a single program
that can act either as a public program or as a regular program. What, then, differentiates the two? Simply
stated, a regular program is RUN while a public program is CALLed.

Public programs were originally designed to be, in somewhat academic terms, fully re-entrant routines,
which could be used by multiple tasks, each with a different set of data and/or conditions, simultaneously.
However, in some operating system environments, the facility may not exist to provide simultaneous use
with fully re-entrant characteristics. To the Thoroughbred Basic programmer, however, these differences
are transparent and of no consequence.

Public programs are, essentially, remote subroutines. Since they are remote, they do not share the data
environment of the parent program that CALLed them. It is necessary for the parent program to pass the
needed data to the public program, and for the public program to return its results to the parent. This
exchange is accomplished by the CALL and ENTER directives. The parent program issues a CALL to
the public program with a list of variable names and/or constants. The status of open files and devices is
automatically passed from the parent to the public program, including all file and record pointers and any
locked records or files in effect at the time of the CALL.

Execution then passes to the public program. When the public program encounters it's ENTER directive,
the variable names and/or constants from the parent program are passed into the public program's data
environment. When the public program wishes to return to the parent program it executes an EXIT
directive, which passes back the variables to the parent program with the values from the public program
at the time of the EXIT. Although difficult to describe in narrative form, the CALLing of public
programs is very common in applications that involve multiple programs with a need for common
routines or operations among them. For more information on the CALL, ENTER, and EXIT directives,
please refer to descriptions in the Thoroughbred Basic Language Reference.

Thoroughbred Basic realizes that, in larger applications environments, it also becomes necessary for
public programs to require common subroutines as well. To that extent, public programs can be CALLed
from other public programs which can be called from other public programs, and so on, to a nested depth
of 127 or the extent of available memory, whichever is encountered first.

CALLing public programs automatically passes the status of open files and all record and file
information and allows for the static passing of data.

25
Copyright  2014 Thoroughbred Software International, Inc.

Ghost tasks

Ghost tasks, a term carried forward from older versions of comparable Business BASIC languages, are
programs that run in a background mode, without their own keyboard and terminal. This makes them
impossible to see through the normal terminal interface; somewhat ghostlike in operations.

Due to the nature of the MS-DOS environment, ghost tasks are not available with Thoroughbred Basic for
MS-DOS.

Ghost tasks are independent programs, which, unlike public programs, do not share environments with
other tasks. They have different task names (G0 through G9, GA through GZ, and Ga through Gz) and
do not have a terminal or keyboard with which to communicate. They communicate through their channel
0 (zero) to other tasks, both regular tasks and other ghost tasks. A regular task, with its own keyboard and
terminal, communicates with a ghost task by issuing an OPEN directive for the ghost task on one of its
regular channels (other than zero). The ghost task completes the communication connection through its
own channel 0 (zero), which does not require an OPEN directive. Thoroughbred Basic provides for 62
ghost tasks.

Enter number of ghosts to add or <CR> to end:
You can specify the number of ghost tasks that will be available to Thoroughbred Basic. Valid values are
1 through 62. Type a valid value and press the Enter key.

Since the ghost task has only one channel 0 (zero), it cannot communicate with more than one regular
task at a time. Also, a ghost task is linked to the regular task until the regular task closes its channel to the
ghost task. It is possible, however, for one ghost task to communicate with another. This is accomplished
when a ghost task opens a second ghost task< using one of the first ghost task's standard channels.

There is a utility, *GPSD, supplied with Thoroughbred Basic that is specifically designed to
communicate with ghost tasks that are running on a given system. Refer to the Thoroughbred Basic
Utilities Manual for more information about this capability.

Since ghost tasks do not have access to the data environment or file environment of other tasks, and since
they have such a limited communication capability with the outside world, what purpose could they
serve? They provide the ability to start up a background program, which runs continuously, performing
functions that do not need intervention from a terminal but should be constantly monitored. Examples
include de-spooling programs for spooled printer output, which constantly monitor the system for output
files that are to be printed. Another example is for clocked operations; in UNIX there is the cron task that
performs predetermined operations based on date and time. Ghost tasks provide the ability to implement
the same features within Thoroughbred Basic.

The capabilities and uses of background tasks such as ghost tasks are limited only by the imagination of
the developer. They are simply another application development tool made available through
Thoroughbred Basic to the programmer or developer.

Program Execution

As stated earlier, all program commands exist as numbered program lines. These lines are executed in
sequential order, starting with the lowest numbered line, unless this order is interrupted by a
Thoroughbred Basic directive that transfers execution to another place in the program.

26
Copyright  2014 Thoroughbred Software International, Inc.

Thoroughbred Basic maintains a stack of addresses of places to go. This Return Address Stack is
designed to remember, with certain directives, the point of return to which to transfer execution when an
associated directive or condition is encountered. For example: the loop control of the FOR/NEXT
directive places an address on the stack when the FOR clause is executed that points to the command that
immediately follows the FOR clause. When the appropriate NEXT clause is encountered, Thoroughbred
Basic knows where to go for the next cycle through the loop. When the loop conditions are satisfied,
execution of the NEXT clause causes this address to be removed from the stack. This explanation is given
only to help in the understanding of those directives, which change the normal sequence of command
execution.

The following directives change the normal sequence of command execution, without regard to previous
addresses remembered on the Return Address Stack:

CALL Transfers execution to a public program with no change to the stack; return from the public
program continues with the stack unchanged.

END Terminates Thoroughbred Basic Run Mode, clears all addresses from the stack, and points to
the first line of the program as the next line to be executed.

EXIT From a public program, terminates execution of the public program, clearing any remaining
addresses on the public program's stack, and returns to the CALLing program.

EXITTO Transfers program execution to the program line specified and removes the topmost address
from the stack, regardless of what directive or condition placed it there.

GOTO Transfers program execution to the program line specified and does not change the address
stack.

The following directives change the normal sequence of command execution, but are sensitive to the
Return Address Stack:

NEXT If the FOR/NEXT loop condition is not fully satisfied, changes execution to the directive
immediately following its matching FOR clause; if satisfied, removes the topmost address
from the Return Address Stack.

GOSUB Transfers program execution to the program line specified and adds an address to the stack
that points to the next statement after the GOSUB directive.

RETRY Attempts execution of the last instruction executed based on the address placed on the Return
Address Stack by an error condition.

RETURN Transfers execution to the topmost address on the stack, presuming it to be the return point
added to the stack by execution of GOSUB or an Escape Key interruption.

WEND Transfers execution back to the directive immediately following its associated WHILE
clause based on the address on the stack placed there by execution of the WHILE.

27
Copyright  2014 Thoroughbred Software International, Inc.

Unless specified otherwise, an error condition or pressing the Escape Key causes a program to go into
Thoroughbred Basic Console Mode at the point of error or interruption. Thoroughbred Basic provides
directives and clauses to help control this:

SETESC This directive specifies a line number to which to go whenever the Escape key is pressed.

SETERR This establishes the default line number to go to whenever an error occurs in Thoroughbred
Basic Run Mode.

DOM= This I/O option in Input/Output directives indicates the line number to go to if a duplicate or
missing key is detected.

END= This I/O option indicates the line number to go to if the end of a file is detected during the
execution of the associated directive.

ERR= This optional clause specifies the line number to go to if this specific directive generates an
error.

ERC= This optional clause enables programmers to define and manage processing errors that occur
within a directive. It provides a structured programming alternative to the ERR= clause.
ERC= is valid anywhere ERR= is valid.

The full complement of Thoroughbred Basic directives offers complete control of program execution
under almost every circumstance except total system failure. Should a Thoroughbred Basic program get
in an irrecoverable loop (loop condition can never be satisfied, no system errors exist, and a SETESC
directive prevents program interruption with the Escape key), there remains one back door available to
the developer. Thoroughbred Basic can be abnormally terminated with the Ctrl-b (hold down the control
key and press the b key) keystroke sequence. This is known as the QUIT character. This, too, can be
controlled through use of the PRM QUIT= statement in the IPLINPUT file.

For more information on the PRM QUIT= statement and the IPLINPUT file, please refer to the chapter
on System Files in the Thoroughbred Basic Customization and Tuning Guide.

Thoroughbred Basic Windows

Thoroughbred Basic, beginning with release level 8.1, offers the concept of windows to the
Thoroughbred Basic programmer/user. In its simplest terms, a terminal/keyboard device is normally a
window of about 80 characters width and some 23 or more rows from top to bottom. Current applications
have shown us that it is very convenient to be able to bring up small amounts of information on a portion
of the entire screen without fully erasing the entire screen and restoring it when done with the ancillary
task.

Under Thoroughbred Basic Windows, you have the ability to create, modify, manipulate, and delete
windows from within a Thoroughbred Basic program. The Thoroughbred Basic Windows Manager keeps
track of screen data that is overlaid by a window and replaces that data when the window is removed.

28
Copyright  2014 Thoroughbred Software International, Inc.

Before an application program can use the Thoroughbred Basic Windows Manager, the terminal must be
properly configured within Thoroughbred Basic. You must first tell Thoroughbred Basic that this terminal
is a windowing terminal by using a type 5 for the DEV T0 line in the IPLINPUT file for this task. Next,
you must be sure that you have described your terminal type to be a windowing terminal using the
*NPSD utility. For more information on the *NPSD utility please refer to the Thoroughbred Basic
Utilities Manual. For more information on the IPLINPUT file, please refer to the chapter on System Files
in the Thoroughbred Basic Customization and Tuning Guide.

The TCONFIGW file, which enables you to use Thoroughbred Basic Windows, differs from TCONFIG8
in that it contains special mnemonic codes for the Thoroughbred Basic Windows Manager. If your
terminal type does not appear in the TCONFIGW file, you can configure a windowing interface table for
it provided that you have the necessary technical reference information on the terminal and follow the
instructions in the *NPSD utility.

It is important that you include the A and G series mnemonics when configuring your table. The G series
tells the Thoroughbred Basic Windows Manager what codes are used for Business Graphics when you
specify a window border of line graphics (BORDERATR=LG). The A series tells the Thoroughbred
Basic Windows Manager, how to change the attributes on this particular terminal. Please note that there is
one series for ANSI terminals and one for non-ANSI terminals. You should define only one of these two
sets in your table. For more information on the A and G mnemonics, please refer to the Thoroughbred
Basic Customization and Tuning Guide.

Using Thoroughbred Basic Windows

The use of windows for presenting help text, file or data lookups, option lists, pull-down menus, pop-up
windows, and so on, enhances an application and provides a very robust development tool for a more
pleasing interface between the software and the user.

To better understand the potential use of windows and the rules governing them, it is best to think of the
entire terminal screen as a window. When you type beyond the end of a line, your cursor normally falls to
the first character position of the next line. When you type past the last line on the bottom of the window,
the entire window normally scrolls up one line and places the cursor at the beginning of the now blank
last line. When you refer to the position of the cursor, you normally talk about row 0, column 0 as the
upper left corner of the window.

When you define a Thoroughbred Basic Window (for example) of 40 columns width and 10 rows height,
the cursor movement is subject to the new width and height. The end of the line wrap occurs after only 40
characters, screen/window scroll occurs after the 10th line of characters, and column 0, row 0, is the
upper left corner of the 40 by 10 window. When you are outputting to or inputting from the window, the
rest of the physical screen remains unaffected. When you finally eliminate the window, whatever screen
characters there were on the previous window that were covered up reappear, and your cursor operations
are once again controlled by the entire screen capacity.

Thoroughbred Basic Windows can be placed on top of other Thoroughbred Basic Windows. You do not
have to delete a Thoroughbred Basic Window to return to a previous Thoroughbred Basic Window. The
previous Thoroughbred Basic Window can be selected, which brings its contents onto the physical screen
and places all input/output operations within its borders. A full understanding of Thoroughbred Basic
Windows requires review and use of the WIN functions and WINDOW directives. For more information
on these functions and directives, please refer to the Thoroughbred Basic Language Reference.

29
Copyright  2014 Thoroughbred Software International, Inc.

Notes on Thoroughbred Basic Windows

If you choose to define your own windowing interface table for your particular terminal, you should note
that *NPSD asks several questions about each mnemonic code that you define. For A and G series
mnemonics, you should respond to the prompt for the code to be transmitted to the terminal with the
proper code sequence. The remaining questions for that mnemonic can be answered with the number 0
(zero) or by pressing the Enter key, which defaults to zero.

The Thoroughbred Basic Windows Manager assumes that terminals don't automatically wrap to the next
line when output goes off the right edge of the window/screen. The Thoroughbred Basic Windows
Manager uses a cursor positioning sequence to bring the cursor to the beginning of the next line. Most
terminals allow the user to turn off auto-wrap, and this is the recommended approach. For those terminals,
which do not provide this ability, you must define the A6 mnemonic, whether this is an ANSI or
non-ANSI terminal, and set the value to any code. The Thoroughbred Basic Windows Manager does not
use this code, it simply senses the presence of "A6" and treats the terminal properly.

If the terminal type takes a space on the window to change a window attribute, then the A8 mnemonic
should be defined. This provides for limited use of terminals such as the Wyse 50 and Televideo 950. If
the A8 mnemonic is defined for a terminal, which does not take a screen position for attributes (such as
the Wyse 60), then output may not display properly. The table must match the terminal for proper
performance. Previous releases of other Thoroughbred products were built to handle both types of
terminal conditions (with and without the space for attributes) by placing an extra space in the mnemonic
codes for non-space terminals. Since the Thoroughbred Basic Windows Manager differentiates between
these two conditions, it is important that terminal tables configured for non-space terminals not contain an
extra space in their mnemonic codes.

If the Thoroughbred Basic Windows Manager does not find the terminal type that you told it to use in
TCONFIGW, it looks in TCONFIG8 before indicating an error. If the Thoroughbred Basic Windows
Manager does not find the necessary A or G series mnemonic codes in the table for your terminal, it
attempts to simulate the necessary operations. The best solution, however, is to have a properly
configured terminal table for your terminal type in TCONFIGW.

For more information…

You should now have some level of understanding of the Thoroughbred Basic programming
environment. The Thoroughbred Basic Language Overview chapter gives a list of Thoroughbred Basic
directives, numeric functions, string functions, and system variables. It is very helpful in providing a
quick overview of all the commands at your disposal in creating Thoroughbred Basic programs.

As with all programming languages, it is also helpful to look at some functioning programs to get a better
understanding of just how things fit together. Although complex in some cases, the utilities that are
provided with Thoroughbred Basic are examples of working programs which can be printed out using the
*KPSD utility or viewed on the terminal screen using the *HPSD utility. We recommend that you do not
attempt to change the utilities in any way, but they do provide some insight into actual program
construction.

The next chapter, Input/Output Processing, provides insight into the different ways data can be stored
and retrieved as well as how to communicate between devices and tasks, and among separate tasks.

30
Copyright  2014 Thoroughbred Software International, Inc.

4. Input/Output Processing

A key reason for the existence of programs is to change data from one form to another. This implies that
there must be a source of data in some form and resultant data when the program is done. In earlier
versions of Thoroughbred Basic there was a DATA statement, which contained the source data for the
program. Later, additional commands were added which allowed the program to take in (input) or send
out (output) data from the keyboard and monitor. Today, almost every storage device and communication
path is available to the program for input and output.

Data, both input and output (I/O), can be grouped or classified in several ways. It can be raw, as opposed
to edited; random versus sequential; fixed-length or variable-length; structured or unstructured. Data can
be a simple stream of characters or could be carefully broken up into files, records, fields, and/or bytes.
The programmer's principal concerns are aimed at understanding how to get data into the program, what
to expect when the program gets that data, how to get data ready for output and send it out, and how does
the program start and end these exchanges of data.

Thoroughbred Basic recognizes the concepts of:

Tasks, which are other programs that may want to input data from this program, or output data to this
program.

Devices, such as tape drives and printers, which accept or send data on commands from the program.

Logical Disk Directories, which represent a collection of files of data on physical disks and provide a
level of organization of files into logical groups.

Files, in a variety of structures, that contain related data in the form of records.

Records within files that contain related pieces of data as one or more fields.

Fields within records, containing related strings of bytes, that may be defined only by their position
within the total record or may be separated by a field separator character.

Bytes within fields that represent characters of data.

Tasks, devices, and logical disk directories normally have 2-character names. Files have names up to 8
characters long in Thoroughbred Basic, even though the actual file as stored on disk may contain many
more characters preceding the Thoroughbred Basic filename. Records, fields, and bytes do not have
names, but are accessed by the position of the record in the file, the field in the record, or the byte in the
field.

31
Copyright  2014 Thoroughbred Software International, Inc.

How programs input or output data

Thoroughbred Basic transfers data in and out through the use of logical channels. First, a device or file is
connected to a specific numbered channel, and then communication can take place. In most cases, this
connection is accomplished by an OPEN directive and terminated by a CLOSE directive (complete
information on each directive is found in the Thoroughbred Basic Language Reference). For example:

OPEN (1) "LP" connects the device LP, normally the name for the parallel printer, to the
program's logical channel number 1.

OPEN (250) "#UTILS" connects the file named #UTILS to logical channel number 250.

After a device or file is connected to a channel, all input and output operations need only refer to the
channel number. There are two conditions where it is not necessary to issue an OPEN directive to
connect a device to a channel for data transfer:

• Each regular task (non-ghost task) always has its channel 0 open to its keyboard and
terminal/monitor. Any attempt to OPEN or CLOSE this channel fails and may generate an error to
the program.

• Each ghost task always has its channel 0 open to provide communication with other tasks.

Input

Once connection is made, data transfer can begin. There are several ways to receive data, each having its
own Thoroughbred Basic directive. They are grouped into two categories based on the expected method
of termination for each record of data taken in. The first two expect a record to be terminated by the
carriage return character (hexadecimal 0D) or one of the function keys on the keyboard, if the keyboard is
the input device:

INPUT The simplest way to take in data, specifically designed for the keyboard.

FINPUT Accepts data from the keyboard, displaying that data in a one-line window on the terminal
screen, allowing for more characters of actual data to be taken in than could be shown in the
window given.

Although these two directives expect a carriage return character or keyboard function key to terminate the
data being taken in, this can be controlled by using I/O options in the actual directive to force a
termination after a specific number of characters have been received. The remaining directives expect the
device to terminate the data record by notifying the operating system (and Thoroughbred Basic) that the
record is complete:

[P]READ Inputs a data record from a file into the data variables specified by the program. PREAD
is designed to read backwards through a file while READ is designed to go forward.

[P]EXTRACT [P]READs a data record and sets a flag that prevents any other task from outputting data
on top of the record in its file, until this task permits it. PEXTRACT processes the file
backwards, EXTRACT in a forward direction.

32
Copyright  2014 Thoroughbred Software International, Inc.

FIND If the specified data record is in the file, FIND behaves like the READ directive.
However, if READ specifies a missing record, the file pointer is placed where the record
should have been located. If FIND specifies a missing record, the file pointer does not
move.

As with INPUT and FINPUT, these three directives can also force an end of record situation using some
of the I/O options available in the directive, which provide for overriding the actual record size and
forcing a new record size for input.

Output

Thoroughbred Basic provides two directives to help you produce output:

PRINT Outputs data to a device or file as a stream of characters, with no real understanding of the
concept of fields or records. This is the normal directive used for outputs to printers and to
the terminal. Thoroughbred Basic automatically places line feed codes, which normally
contain the carriage return character, at the end of the string of characters, unless instructed
by the directive to not do so.

WRITE Outputs data in the form of a record. This is the most common directive used to output data to
all file types.

Each of these directives for transfer of data has sub-commands that control the actual transfer and
placement of the data. These vary from one file organization to another.

Data organization

Input from the task's keyboard and output to its screen (terminal or monitor) have no real data
organization. The data is anything from a single byte to a stream of bytes with no real concept for records
or files. Data stored on storage media such as disk or tape, however, can be organized in three different
ways based on how the data is to be stored and retrieved:

Sequential access, where data records are read or written one after the other in a specific sequence. That
sequence might be based on chronology (when the record was written) or on the value of a sequencing
key (index number or key field).

Random access, where data records are read or written individually based on some value associated with
the record. This value is normally referred to as the key of the record.

Indexed sequential access, in which records are arranged in logical sequence by key. Indexes to these
keys permit direct access to individual records.

Each access method has its advantages and disadvantages: sequential is normally faster than random,
providing you want to process all records in their order; random allows unordered processing and is
essential for interactive, unsorted transaction processing. Thoroughbred Basic provides different file types
for each access method, with differing characteristics, to provide the programmer with tools to efficiently
store and retrieve data.

33
Copyright  2014 Thoroughbred Software International, Inc.

Sequential data access

There are three file types that are designed for sequential access, although all file types allow the access
of data records sequentially:

INDEXED Sequential files with fixed record lengths.

SERIAL Sequential files with variable record lengths.

TEXT Sequential files with no records, only a sequence of bytes.

The first two file types can be opened and read (using the READ directive) starting with the first data
record in the file. Each successive read accesses the next sequential data record in the file until you
attempt to read beyond the last record, which generates an ERR=02 signifying end of file. Thoroughbred
Basic offers one additional feature for these sequentially organized files. When each record is written, it is
assigned a unique number and its physical position in the file is linked to that number. This permits access
to an individual record within a sequential file by its number (referred to as its IND value), and eliminates
the necessity of reading every record from the front of the file up to the record desired.

Since TEXT files do not recognize the concept of records, IND is used to refer to the starting byte
number in the file, and the READ uses SIZ= to determine how many bytes to read.

You cannot remove a record from a sequentially organized file, just as you cannot remove a piece out of
the middle of a sequential magnetic tape. With INDEXED or TEXT files, you may write over any
individual record or bytes since each record is of the same size. SERIAL files, with their varying record
sizes, do not permit overwrite. The only way to write into an existing SERIAL file is to open the file and
issue a LOCK directive, which prohibits anyone else from writing to the file while you have it locked.
The first write adds a data record just after the last record in the file, and all other records are sequentially
written from there. SERIAL files are very useful for spooling printouts where each printed line is
logically sequential in order but may vary significantly in length from one printed line to another. TEXT
files are very useful when interfacing to system-generated, flat files such as those produced by the UNIX
editors vi and ed.

Object libraries

Starting with release level 8.2, programs can be stored in files called Thoroughbred Basic object libraries.
A Thoroughbred Basic object library is a collection of Thoroughbred Basic programs in one file, with a
table of contents. Opening the file loads the table of contents into memory, which allows for faster
program loading and increases the speed of applications that use many different program modules.

When Thoroughbred Basic tries to load a program into memory using directives such as LOAD, RUN,
CALL, or ADDR, it searches the table of contents before it searches the disks.

The object library is a TEXT file in the following format:

Bytes Description

01 - 50 Reserved for Thoroughbred Basic internal use.

51 - 52 5441 (TA). This is the only number that shows that this TEXT file is an object library.

34
Copyright  2014 Thoroughbred Software International, Inc.

53 - 54 Maximum length of program names in the table of contents (NL below).

55 - 58 Offset to start table of contents.

59 - 60 Length of table of contents.

Table of contents entry

01 - NL Program name (null or space filled).

NL + 1 - 4 Starting byte address of program, from beginning of the file.

NL + 5 - 6 Program length.

Thoroughbred Basic expects a sorted table of contents.

To open an object library and load its table of contents into memory, use the following syntax:

OPEN (channel,OPT="OLIB") libfile$

Random data access

Although it is normally not logical for a file to exist in any order other than some form of sequential, it is
often desirable to access each data record in non-sequential order. The IND record number used in
sequential data access is usually not sufficient for the purpose of distinguishing one record from another.
That normally requires differentiation by some name, field, or group of fields; and Thoroughbred Basic
refers to that differentiator as a key.

Just as the IND record number pointed to a specific record in the file, there is a KEY function that points
to a specific record in a random data access file structure. Unlike the IND record number, however, this
KEY is a string of characters and keys are kept in sorted order (collating sequence). That sorted order is
referred to as the sequential order of the file, even though it has no correlation with the actual order in
which the data records were written.

In reality, random data access is accomplished through the use of two files for each data file: one that
holds the KEY values and points to the data record in the file for each key, and one that actually holds the
data records. There are three Thoroughbred Basic file types that support random data access:

SORT Composed of single dimension keys only and no associated data records. These are normally
used as cross-keys into another file or can be used to provide the Thoroughbred Basic
programmer a one-pass sorting capability for any data file.

DIRECT Composed of keys and associated data records. Each data record has a single, unique key.
One key, points to only one record and one record has only one key. The actual key value
need not be part of the data in the record.

35
Copyright  2014 Thoroughbred Software International, Inc.

MSORT Composed of multiple keys and associated data records. Unlike DIRECT files, MSORT files
have multiple levels of keys and permit access to data records by primary key or by any of
the defined secondary keys. With MSORT files, the keys must be part of the data in the
record. The primary key must be unique within the file, but there may exist duplicates among
secondary keys.

Each file type has its specific uses and advantages. The time needed to get a key in a SORT file is
generally less than the time needed to get a data record in a DIRECT file, which is generally less time
than in an MSORT file. MSORT files, however, offer access to data records in multiple keyed orders,
with Thoroughbred Basic maintaining the integrity of keys and data. A comparable effect could be
accomplished through the use of a DIRECT file and one or more associated SORT files, but the
programmer then assumes the responsibility for maintaining the integrity between the DIRECT file data
records and the SORT file pointers. This 2-file approach normally takes more time overall than MSORT
alone in reading and writing data records.

Indexed sequential access

Thoroughbred Basic offers one file type that uses indexed sequential data organization: TISAM. It should
be noted that the MSORT file type, discussed earlier in random data access, actually uses a limited
sequential access data organization (a separate index file with pointers into the actual data file), but was
implemented primarily to provide multiple-keyed access to a random file as opposed to only single-keyed
access provided by the DIRECT file type.

TISAM files are comprised of multiple keys and associated data records with multiple levels of keys,
permitting access to data records by primary key or by any of the defined secondary keys. As with
MSORT files, TISAM requires that the keys must be part of the actual data in each record. The primary
key must be unique within the file, but there may exist duplicates among secondary keys unless the
secondary key is designated as a unique key sequence.

TISAM files use a two-file structure that is comparable to C-ISAM files, commonly found in the UNIX
environment. Thoroughbred Basic READs and WRITEs records from or to a C-ISAM file provided that
the data structures used within the file are compatible with Thoroughbred Basic data structures. It should
be noted that the concept of fields in a file, delimited by the field separator character $8A$, are not
recognized in TISAM files. Each record is treated as a single field, made up of bytes or groups of bytes as
defined by use. All other Thoroughbred Basic file types (except TEXT, where only bytes are recognized),
accept the concept of fields and field separators, allowing for a difference between READ and READ
RECORD or WRITE and WRITE RECORD.

Other directives used for input/output processing

There are Thoroughbred Basic directives to define each file type as well as the directives we have
discussed to read and write data. The DIRECT directive is used to create DIRECT files; SORT directive,
SORT files; and so on. Each of these, and all their options, are described in the Thoroughbred Basic
Language Reference. There are some additional directives that are input/output directives:

LOCK Prohibits access to an entire file by any other task while this task has it open and locked.
The EXTRACT directive prohibits access to only a single record.

36
Copyright  2014 Thoroughbred Software International, Inc.

REMOVE The directive used to eliminate a data record and its key from any random access or
indexed sequential access file type.

ERASE Remove an entire file, deleting its entry in its logical disk directory and making its
physical disk space available for reallocation.

IOLIST Defines a list of variables to be used with reading and writing records that make use of
field separators between fields (see the IOL= option for read and write directives in the
Thoroughbred Basic Language Reference.

TABLE Defines a character conversion table which is to be used on data records after reading or
before writing whenever the TBL= option is specified in the read or write operation.

It is also important to note that the FINPUT, INPUT, and PRINT directives were designed for the
keyboard, terminal screen, and printers. They have special capabilities, such as the ability to set the cursor
or print position that separates them from the other input/output directives. These capabilities are covered
in depth in the Thoroughbred Basic Language Reference. These directives also make use of mnemonic
codes, which allow such operations as clear screen, page eject, reverse video, turn off cursor, etc.
Mnemonics are discussed later in this chapter.

Input/output options for directives

Each input/output directive has options that may be used to help specify what record is to be affected,
where the data is to come from or go to, and what to do in case of problems. These are referred to as I/O
options and are discussed in depth with each input/output directive in the Thoroughbred Basic Language
Reference. They are listed here to show the capabilities available to the programmer with each read or
write of data.

Record Specification

IND=nn Specifies the index number of the record to access in an INDEXED file. If IND=nn
and KEY=string are specified, IND=nn is ignored.

KEY=string Specifies the key value of the record to access in a DIRECT file. If IND=nn and
KEY=string are specified, IND=nn is ignored.

SRT=sortname Specifies which sort key is to be used with an MSORT file.

Branching Specification

DOM=lineref Specifies the program line number to branch to if an attempt is made to access a
record using KEY= and no such key value is found (ERR=11). DOM= takes
precedence over ERR= in the same directive.

END=lineref Specifies the program line number to branch to if this directive senses the end of file
(ERR=02). END= takes precedence over ERR= in the same directive. Processing a
file backwards (PREAD or PEXTRACT) results in an end of file condition when
the physical beginning of the file is reached.

37
Copyright  2014 Thoroughbred Software International, Inc.

ERR=lineref Specifies the program line number to branch to if an error is produced by this
directive.

Verification Specification

LEN=min,max Specifies the minimum and maximum number of characters to be accepted by this
input directive; less than minimum or more than maximum results in an ERR=48.

[-]range Specifies the minimum and maximum numeric values to be accepted by this input
directive; numbers outside the range results in an ERR=48. Unsigned range indicates
the range is 0 (zero) through range; negative range indicates the range is negative
range through positive range.

string=lineref Specifies the program line number to branch to if the specific string is entered in
response to this (input) directive.

Miscellaneous Specification

IOL=lineref Specifies a program line number containing an IOLIST directive that defines a
variable list to be used when inputting or outputting data from/to a record with this
directive.

TBL=lineref Specifies the program line number of the TABLE directive to be used for code
conversion after input or before output of data by this directive.

TIM=nn Specifies the number of seconds allowed to elapse without any data transfer before an
ERR=0 is generated by this (input) directive. Actual time may vary by -1/+0
seconds.

SIZ=max Specifies the integer maximum number of characters to be transferred by this (input)
directive before an end of record is forced. Following data is not lost and can be
retrieved by additional (input) directives. The end of record terminator is the same as
the F5 key (setting CTL system variable to 5).

ERC=numval Specifies a programmer-defined value. This clause enables programmers to define
and manage processing errors that occur within a directive. It provides a structured
programming alternative to the ERR= clause. ERC= is valid anywhere ERR= is
valid.

The PRINT directive offers additional capability with its data masking functions. Refer to the chapter on
Data Representation and the PRINT directive in the Thoroughbred Basic Language Reference.

Mnemonics

In Thoroughbred Basic, mnemonics are two-character codes that refer to specific commands or character
strings that are interpreted by a device driver. Thoroughbred Basic enables you to use terminal
mnemonics and printer mnemonics.

38
Copyright  2014 Thoroughbred Software International, Inc.

Terminal mnemonics

Terminal mnemonics are variables that contain codes or characters that can be interpreted by a terminal
driver or the Thoroughbred Basic Windows Manager. Use of terminal mnemonics may help speed
application development:

• Thoroughbred Basic programmers do not have to remember or look up code sequences when they
need to perform operations such as clearing the screen.

• Mnemonics provide naming conventions for actions that can occur on a variety of site terminals.

• Mnemonics can help produce more readable code.

Terminal mnemonics can be used in Thoroughbred Basic directives such as FINPUT, INPUT, or
PRINT. In many cases, Thoroughbred Basic programmers can use a mnemonic or the appropriate
hexadecimal character sequence to tell the terminal what to do. However, if you plan to use Thoroughbred
Basic Windows, you must consider using mnemonics.

The Thoroughbred Basic Windows Manager executes the command specified for the mnemonic within
the confines of the active Thoroughbred Basic Window. For example, the 'CS' (clear screen) mnemonic
contains a command to clear all characters from the screen; if a programmer uses this mnemonic the
Thoroughbred Basic Windows Manager only clears the active Thoroughbred Basic Window. However, if
the programmer chooses to use the command and not the mnemonic the command is sent to the terminal
without interpretation; the command clears the entire screen but the Thoroughbred Basic Windows
Manager will not be able to determine the current cursor position.

For more information on how to configure and specify terminal mnemonics, please refer to the
Thoroughbred Basic Customization and Tuning Guide.

The following list describes Thoroughbred Basic terminal mnemonics. Some terminals cannot perform
the functions associated with some mnemonics. When a terminal cannot perform the operation, or if a
mnemonic is invalid or undefined, Thoroughbred Basic generates the error code 29, displayed as
ERR=29, and returns the error to the program. However, you can turn off error generation by specifying
the 'EM' mnemonic.

List of Terminal Mnemonics

The mnemonics 'A1' through 'A8' contain commands for terminals that do not follow the ANSI standard.
The mnemonics 'A9' contains a command that specifies how your terminal executes its color routines.
The mnemonics 'AA' through 'AF' contain commands for terminals that follow the ANSI standard.

'A1' contains the advance escape code sequence for the multi-attribute change command.
This sequence precedes the specifications contained in the 'A2' and 'A3' mnemonics,
which are described below. This is a Thoroughbred Basic Windows attribute
mnemonic for terminals that do not follow the ANSI standard.

'A2' contains the number of bytes that specify the “body” size of each attribute change
code; in most cases this value is specified as 1 byte. This is a Thoroughbred Basic
Windows attribute mnemonic for terminals that do not follow the ANSI standard.

39
Copyright  2014 Thoroughbred Software International, Inc.

'A3' contains a string of all the values of all the “body” characters ordered from attribute 0
through attribute 15. This is a Thoroughbred Basic Windows attribute mnemonics for
terminals that do not follow the ANSI standard.

'A4' contains the trailing escape code sequence, which follows the “body” specifications
contained in the 'A2' and 'A3' mnemonics. If the terminal does not require a trailing
sequence you can specify 00, one null character, as the value of this mnemonic.
This is a Thoroughbred Basic Windows attribute mnemonic for terminals that do not
follow the ANSI standard.

'A5' contains the number of defined attribute states; in most cases, this value is 16. This is
a Thoroughbred Basic Windows attribute mnemonic for terminals that do not follow
the ANSI standard.

'A6' contains a value that disables the automatic wrapping feature:

If this mnemonic is defined the Thoroughbred Basic Windows driver assumes that
this terminal automatically wraps output at the end of a line. To make full use of
Thoroughbred Basic Windows, you can specify any value, NULL for example to turn
off the automatic wrapping feature.

If this mnemonic is not defined the Thoroughbred Basic Windows driver assumes
that this terminal does not automatically wrap output at the end of each line. You don
not have to specify a value for this mnemonic.

This is a Thoroughbred Basic Windows attribute mnemonic for terminals that do not
follow the ANSI standard.

'A7' is a mnemonic reserved for Thoroughbred Basic internal use.

'A8' contains a value that specifies that display attributes can occupy physical position on
the terminal screen:

If this mnemonic is defined to any value the Thoroughbred Basic Windows driver
assumes that display attributes change mnemonics can occupy a position on the
terminal screen.

If this mnemonic is not defined the Thoroughbred Basic Windows driver assumes
that display attributes change mnemonics do not occupy a position on the terminal
screen.

This is a Thoroughbred Basic Windows attribute mnemonic for terminals that do not
follow the ANSI standard.

40
Copyright  2014 Thoroughbred Software International, Inc.

'A9' contains a value that describes how the terminal executes its color routines. You can
specify a value that includes at least one of the following bit values:

00 Your terminal requires two different escape sequences to start color. This is
the default. The color mnemonics have the following properties:

KW means start the foreground color sequence.

KX means end the foreground color sequence.

KY means start the background color sequence.

KZ means end the background color sequence.

01 Reverse video cannot work properly with the way your terminal executes its
color routines. Thoroughbred Basic simulates reverse video by reversing the
foreground and background colors.

02 Color intensity cannot work properly with the way your terminal executes its
color routines. Thoroughbred Basic simulates color intensities by changing
the color.

04 Your terminal requires four different escape sequences to start color. The
color mnemonics have the following properties:

KW means start the foreground color sequence.

KX means end the light foreground color sequence.

KY means start the background color sequence.

KZ means end the light background color sequence.

08 Your terminal requires that the foreground color code and the background
color code be included in one escape sequence. The color mnemonics have
the following properties:

KW means start the color sequence where the foreground color comes
before the background color.

KY means start the color sequence where the background color comes
before the foreground color.

KX is the sequence that separates the color codes.

KZ means end the color sequence.

The 'KW', 'KX', 'KY', and 'KZ' mnemonic have individual entries and descriptions in this section. To
specify colors you can use one of the mnemonics that range from 'K0' through 'KF'. To complete color
management specifications you can specify values for those mnemonics as well as for 'A9'.

41
Copyright  2014 Thoroughbred Software International, Inc.

'AA' contains the advance escape code sequence for the multi-attribute change command.
This sequence precedes the specifications contained in the 'AB' and 'AC'
mnemonics, which are described below. This is a Thoroughbred Basic Windows
attribute mnemonic for terminals that follow the ANSI standard.

'AB' contains a string of all the values of all the “body” characters in this order:
background, foreground, normal video, reverse video, underline off, underline on,
blink off, blink on. Each body code is preceded by one byte that contains a binary
number to specify the length of the following body code; in most cases this value is 1
or 2. This is a Thoroughbred Basic Windows attribute mnemonic for terminals that
follow the ANSI standard.

'AC' contains the separator character sequence. In most cases, the separator character is
one byte, a ; (semicolon) for example, that is placed between each attribute change
code. This is a Thoroughbred Basic Windows attribute mnemonic for terminals that
follow the ANSI standard.

'AD' contains the trailing escape code sequence, which follows the “body” specifications
contained n the 'AB' and 'AC' mnemonics. If the terminal does not require a trailing
sequence specify 00, one null character, as the value of this mnemonic. This is a
Thoroughbred Basic Windows attribute mnemonic for terminals that follow the
ANSI standard.

'AE' contains the number of defined attribute states; in most cases, this value is 8. This is a
Thoroughbred Basic Windows attribute mnemonic for terminals that follow the
ANSI standard.

'AF' contains the escape code sequence to turn off all attributes. If this terminal feature is
available and defined, it can speed some Thoroughbred Basic Windows operations.
This is a Thoroughbred Basic Windows attribute mnemonic for terminals that follow
the ANSI standard.

Many of the mnemonics named 'Bx', where x is a letter, begin an operation that can be ended by
specifying the corresponding 'Ex' mnemonic.

'BACKGR' is short for background. This mnemonic can contain a command that enables the next
color change command to change the current background color instead of the current
foreground color.

'BB' is short for begin blink. This mnemonic can contain a command that causes the
characters that follow to flash on and off. In most cases, the flash occurs about once a
second.

The 'EB' (end blink) mnemonic can contain a command that returns your terminal
screen to normal video mode.

'BD' is short for begin blink with underline. This mnemonic can contain a command that
adds an underscore to the characters that follow and causes all of those characters to
flash on and off. In most cases, the flash occurs about once a second.

42
Copyright  2014 Thoroughbred Software International, Inc.

The 'EB' (end blink) mnemonic can contain a command that returns your terminal
screen to normal video mode.

'BE' is short for begin keyboard echo. This mnemonic contains a command that causes
characters typed on the keyboard to display on the terminal screen.

The 'EE' (end keyboard echo) mnemonic contains a command that disables keyboard
echo.

Thoroughbred Basic Windows defines this mnemonic. Do not define this mnemonic
or specify a value for it.

'BF' is short for begin reverse video in foreground intensity. This mnemonic can contain a
command that reverses foreground and background colors for characters that follow
the command. Reversed characters and background are displayed in foreground
intensity.

The 'ER' (end reverse video) mnemonic can contain a command that restores the
normal video mode.

'BG' is short for begin graphics mode. This mnemonic can contain a command that
changes the current character set to the graphics character set. Characters that follow
this command are displayed as graphics characters.

The 'EG' (end graphics mode) mnemonic can contain a command that restores the
previous character set.

For information on graphics characters that can be used to draw boxes, please refer to
the descriptions of the 'Gn' mnemonics, where n is a hexadecimal number from 0
through F.

'BI' is short for begin input transparency. This mnemonic contains a command that passes
each character to your program without interpretation. The codes and sequences
generated by the Enter key, function keys, and text-editing keys are treated as
characters rather than commands.

The 'EI' (end input transparency) mnemonic contains a command that causes your
program to disable input transparency.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'BLACK' contains a command that changes the current foreground color to black. A terminal
that does not provide this color will not respond to the command to change color.

'BLUE' contains a command that changes the current foreground color to blue. A terminal
that does not provide this color will not respond to the command to change color.

'BM' is short for begin ERR=29 generation for undefined mnemonics. This mnemonic
contains a command that causes a Thoroughbred Basic program to issue the error
code 29 when it encounters an undefined or invalid mnemonic.

43
Copyright  2014 Thoroughbred Software International, Inc.

The 'EM' (end ERR=29 generation for undefined mnemonics) mnemonic contains a
command that causes a Thoroughbred Basic program to ignore undefined or invalid
mnemonics.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'BO' is short for begin output transparency. This mnemonic contains a command that
passes each character to your terminal without interpretation. The codes and
sequences generated by the Enter key, function keys, text-editing keys, and
mnemonics are treated as characters rather than commands.

The 'EO' (end output transparency) mnemonic contains a command that causes your
terminal to disable output transparency.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'BR' is short for begin reverse video. This mnemonic can contain a command that reverses
foreground and background colors for characters that follow the command.

The 'ER' (end reverse video) mnemonic can contain a command that restores the
normal video mode.

'BROWN' contains a command that changes the current foreground color to brown. A terminal
that does not provide this color will not respond to the command to change color.

'BS' is short for backspace. This mnemonic contains a command that backspaces one
character position.

'BT' is short for begin type-ahead control. This mnemonic contains a command that causes
keyboard input to be placed in a buffer when a user types more characters than a
Thoroughbred Basic program can manage at the time. The buffered characters are
sent to the program as they are needed. A keyboard buffer enables users to "type
ahead" of the program.

The 'ET' (end type-ahead control) mnemonic can contain a command that disables
type-ahead control. The 'CI' (clear the input buffer) mnemonic can contain a
command that removes all characters from the type-ahead buffer for keyboard input.

This mnemonic is defined by Thoroughbred Basic. Do not define this value or
specify a value for it.

'BU' is short for begin underline. This mnemonic can contain a command that adds an
underscore to the characters that follow.

The 'EU' (end underline) mnemonic can contain a command that returns your
terminal screen to normal video mode.

44
Copyright  2014 Thoroughbred Software International, Inc.

'BV' is short for begin blink and reverse video. This mnemonic can contain a command
that places the characters that follow in reverse video mode and causes all of those
characters to flash on and off. In most cases, the flash occurs about once a second.
This mnemonic is like the 'BB' mnemonic with reverse video added.

The 'EB' (end blink) mnemonic can contain a command that returns your terminal
screen to normal video mode.

Many of the mnemonics named 'Cx', where x is a letter, are used to clear characters from some area such
as a line or screen.

'CE' is short for clear to end. This mnemonic can contain a command that removes all
characters from the cursor position to the end of the screen or Thoroughbred Basic
Window.

'CF' is short for clear all characters in foreground intensity. This mnemonic can contain a
command that removes all of the foreground characters from the screen or
Thoroughbred Basic Window.

Because the Thoroughbred Basic Windows Manager defines the 'CF' mnemonic you
can use this mnemonic under Thoroughbred Basic Windows without specifying a
value for it.

'CH' is short for move the cursor to home position. This mnemonic can contain a
command that moves the cursor to the upper left corner of the screen or
Thoroughbred Basic Window. The final position is often described as the coordinate
position (0,0).

'CI' is short for clear the input buffer. This mnemonic can contain a command that
removes all characters from the type-ahead buffer for keyboard input. For more
information on type-ahead control please refer to the descriptions of the 'BT' and
'ET' mnemonics.

This mnemonic is defined by Thoroughbred Basic. Do not define this value or
specify a value for it.

'CL' is short for clear to end of line. This mnemonic can contain a command that removes
all characters from the cursor through the end of the line. The line can be displayed
on the screen or in a Thoroughbred Basic Window. Cursor position does not change.

The 'DL' (delete line) mnemonic can contain a command that removes the line that
contains the cursor.

'CLI' is short for color in low intensity. This mnemonic can contain a command that causes
the next color specified to display in low intensity mode.

'CN' is short for cursor on. This mnemonic can contain a command that makes the cursor
visible on the screen or in a Thoroughbred Basic Window. You can use the 'CO'
mnemonic to make the cursor invisible.

45
Copyright  2014 Thoroughbred Software International, Inc.

'CO' is short for cursor off. This mnemonic can contain a command that makes the cursor
invisible on the screen or in a Thoroughbred Basic Window. You can use the 'CN'
mnemonic to make the cursor visible.

'CR' is short for carriage return. This mnemonic can contain a command that issues a CR
(carriage return) character and appropriately positions the cursor.

The 'LF' (line feed) mnemonic can contain a command that issues the line feed
character.

'CS' is short for clear the screen. This mnemonic can contain a command that removes all
characters from the screen or Thoroughbred Basic Window and places the cursor in
the upper left corner.

'CU' is short for cursor read. This mnemonic provides the current cursor position relative
to the Thoroughbred Basic Window. The command returns 2 bytes to your program:

• The first byte contains the binary value of the current cursor row position plus
32.

• The second byte contains the binary value of the current cursor column plus 32.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'CYAN' contains a command that changes the current foreground color to cyan. A terminal
that does not provide this color will not respond to the command to change color.

The mnemonics named 'Dx', where x is a letter, contain commands that perform a variety of functions.

'DC' is short for delete character. This mnemonic contains a command that removes the
character in the current cursor position. The characters to the right of the cursor are
moved left one character position and a space character is placed in the last position
in the line.

For information on how to place a character into a line of text please refer to the
description of the 'IC' (insert character) mnemonic.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'DM' is short for default mode. This mnemonic contains a command that sets some cursor
and Thoroughbred Basic Windows specifications to defaults.

• Make the cursor invisible, if available. For more information please refer to the
description of the 'CO' mnemonic.

• Set the display to normal video.

• Set foreground mode.

46
Copyright  2014 Thoroughbred Software International, Inc.

• Activate Thoroughbred Basic ERR=29 processing. For more information please
refer to the description of the 'BM' mnemonic.

• Activate type-ahead control. For more information please refer to the description
of the 'BT' mnemonic.

• Activate input echo routines. For more information please refer to the description
of the 'BE' mnemonic.

• Turn off input transparency. For more information please refer to the description
of the 'EI' mnemonic.

• Turn off output transparency. For more information please refer to the
description of the 'EO' mnemonic.

• Turn off the uppercase routines. For more information please refer to the
description of the 'LC' mnemonic.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'DN' is short for display on. This mnemonic can contain a command that makes the entire
screen visible. To turn off the display please refer to the description of the 'DO'
mnemonic.

'DO' is short for display off. This mnemonic can contain a command that makes the entire
screen invisible. To turn on the display please refer to the description of the 'DN'
mnemonic.

Most of the mnemonics named 'Ex', where x is a letter, are designed to finish an operation begun by the
corresponding 'Bx' mnemonic.

'EB' is short for end blink. This mnemonic can contain a command that causes the
characters that follow to display in normal video mode. In most cases this command
follows the command specified for the 'BB', 'BD', or 'BV' mnemonic.

The 'BB' (begin blink) mnemonic can contain a command that causes the characters
that follow to flash on and off. The 'BD' (begin blink with underline) mnemonic can
contain a command that adds an underscore to the characters that follow and causes
all of those characters to blink. The 'BV' (begin blink and reverse video) mnemonic
can contain a command that places the characters that follow in reverse video mode
and causes the characters to blink.

'EE' is short for end keyboard echo. This mnemonic contains a command that prevents
characters typed on the keyboard from display on the terminal screen.

In most cases this command follows the command specified for the 'BE' mnemonic.
The 'BE' (begin keyboard echo) mnemonic contains a command that activates
keyboard echo.

47
Copyright  2014 Thoroughbred Software International, Inc.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'EF' is short for end with foreground intensity. This mnemonic can contain a command
that causes the command specified for the 'BR' (begin reverse video) mnemonic to
set the intensity to background and the command specified for the 'ER' (end reverse
video) mnemonic to set the intensity to foreground. This is the default.

For more information please refer to the descriptions of the 'BR', 'ER', and 'EX'
mnemonics.

'EG' is short for end graphics mode. This mnemonic can contain a command that changes
the current character set to the standard character set. Characters that follow this
command are displayed as standard characters.

In most cases this command follows the command specified for the 'BG' (begin
graphics mode) mnemonic. The 'BG' (begin graphics mode) mnemonic can contain a
command that changes the current character set to the graphics character set.

'EI' is short for end input transparency. This mnemonic contains a command that causes
your system to interpret some of the characters passed to your program. Codes and
sequences generated by the Enter key, function keys, and text-editing keys are
treated as commands rather than characters.

In most cases, this command follows the command specified for the 'BI' (begin input
transparency) mnemonic. The 'BI' (begin input transparency) mnemonic contains a
command that passes each character to your program without interpretation.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'EL' is short for end load. This mnemonic can contain a command that stops the loading of
a terminal table to the terminal.

In most cases this command follows the command specified for the 'SL' (start load)
mnemonic. The 'SL' (start load) mnemonic can contain a command that starts
loading a terminal table to a terminal.

'EM' is short for end ERR=29 generation for undefined mnemonics. This mnemonic
contains a command that causes a Thoroughbred Basic program to ignore undefined
or invalid mnemonics.

In most cases this command follows the command specified for the 'BM' mnemonic.
The 'BM' (begin ERR=29 generation for undefined mnemonics) mnemonic contains
a command that causes a Thoroughbred Basic program to issue the error code 29
when it encounters an undefined or invalid mnemonic.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

48
Copyright  2014 Thoroughbred Software International, Inc.

'EO' is short for end output transparency. This mnemonic contains a command that causes
your system to interpret some of the characters passed to your terminal. Codes and
sequences generated by the Enter key, function keys, and text-editing keys are
treated as commands rather than characters.

In most cases, this command follows the command specified for the 'BO' (begin
output transparency) mnemonic. The 'BO' (begin output transparency) mnemonic
contains a command that passes each character to your terminal without
interpretation.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'EP' is short for expanded print mode. This mnemonic can contain a command that causes
characters to display at double their height and width. Many terminals do not support
expanded print mode.

In most cases, the end of output to the terminal cancels expanded print mode.

The Thoroughbred Basic Windows Manager does not support this mnemonic. You
can use this command only if you are not using Thoroughbred Basic Windows.

'ER' is short for end reverse video. This mnemonic can contain a command that restores
the normal video mode. In most cases this command follows the command specified
for the 'BR' or 'BF' mnemonic.

The 'BR' (begin reverse video) mnemonic can contain a command that reverses
foreground and background colors for characters that follow the command. The 'BF'
(begin reverse video in foreground intensity) mnemonic can contain a command that
reverses colors for the characters that follow and displays the characters and
background in foreground intensity.

'ES' is short for the escape character. This mnemonic can contain a command that sends
an escape character to the terminal.

Do not use this mnemonic under Thoroughbred Basic Windows.

'ET' is short for end type-ahead control. This command contains a command that disables
type-ahead control. When type-ahead control is active keyboard input is placed in a
buffer when a user types more characters than a Thoroughbred Basic program can
manage at the time.

In most cases this command follows the command specified for the 'BT' mnemonic.
The 'BT' (begin type-ahead control) mnemonic can contain a command that activates
type-ahead control.

Note: The 'CI' (clear the input buffer) mnemonic can contain a command that
removes all characters from the type-ahead buffer for keyboard input.

This mnemonic is defined by Thoroughbred Basic. Do not define this value or
specify a value for it.

49
Copyright  2014 Thoroughbred Software International, Inc.

'EU' is short for end underline. This mnemonic can contain a command that displays the
following characters without adding underscore characters.

In most cases this command follows the command specified for the 'BU' mnemonic.
The 'BU' mnemonic can contain a command that adds an underscore to the
characters that follow.

'EX' is short for end with either foreground and background intensity. This mnemonic can
contain a command that causes the commands specified for the 'BR' (begin reverse
video) and 'ER' (end reverse video) mnemonics to have no effect on intensity when
they change reverse video mode.

For more information please refer to the descriptions of the 'BR', 'ER', and 'EF'
mnemonics.

The 'FF' mnemonic can be used to issue a form feed.

'FF' is short for form feed. This mnemonic can contain a command that sends a form feed
character sequence:

• If you are running Thoroughbred Basic Windows and no value is specified for
'FF' the Thoroughbred Basic Windows Manager will issue the command
specified for the 'CS' (clear screen) mnemonic. If the 'CS' mnemonic is not
defined, the Thoroughbred Basic Windows Manager takes no further action.

• If you are not running Thoroughbred Basic Windows this mnemonic is ignored.

The mnemonics that range from 'G0' through 'GF' enable you to draw graphics boxes.

'G0' contains a sequence that displays a horizontal line when the terminal is in graphics
mode.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'G1' contains a sequence that displays a vertical line when the terminal is in graphics
mode.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'G2' contains a sequence that displays the upper left corner of a box when the terminal is
in graphics mode.

50
Copyright  2014 Thoroughbred Software International, Inc.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'G3' contains a sequence that displays the upper right corner of a box when the terminal is
in graphics mode.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'G4' contains a sequence that displays the lower left corner of a box when the terminal is
in graphics mode.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'G5' contains a sequence that displays the lower right corner of a box when the terminal is
in graphics mode.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'G6' contains a sequence that displays the connect to right bar when the terminal is in
graphics mode. A connect to right bar is a vertical bar with a horizontal bar meeting it
from the right.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'G7' contains a sequence that displays the connect to left bar when the terminal is in
graphics mode. A connect to left bar is a vertical bar with a horizontal bar meeting it
from the left.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'G8' contains a sequence that displays the connect to lower bar when the terminal is in
graphics mode. A connect to lower bar is a horizontal bar with a vertical bar meeting
it from below.

51
Copyright  2014 Thoroughbred Software International, Inc.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'G9' contains a sequence that displays the connect to upper bar when the terminal is in
graphics mode. A connect to upper bar is a horizontal bar with a vertical bar meeting
it from above.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'GA' contains a sequence that displays a cross when the terminal is in graphics mode. A
cross is a horizontal bar and a vertical bar that cross in the middle.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'GB' contains a sequence that displays a highest intensity block when the terminal is in
graphics mode.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'GC' contains a sequence that displays a middle intensity block when the terminal is in
graphics mode.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'GD' contains a sequence that displays a lowest intensity block when in graphics mode.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'GE ' contains a sequence that displays a double vertical bar when the terminal is in
graphics mode.

52
Copyright  2014 Thoroughbred Software International, Inc.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'GF' contains a sequence that displays a double horizontal bar when the terminal is in
graphics mode.

For more information on how to specify graphics mode for your terminal please refer
to the description of the 'BG' (begin graphics mode) mnemonic. For more
information on graphics characters please refer to the descriptions of the 'Gn'
mnemonics, where n is a hexadecimal number from 0 through F.

'GRAY' contains a command that changes the current foreground color to gray. A terminal
that does not provide this color will not respond to the command to change color.

'GREEN' contains a command that changes the current foreground color to green. A terminal
that does not provide this color will not respond to the command to change color.

The 'IC' mnemonic can be used to insert characters.

'IC' is short for insert character. This mnemonic contains a command that moves the
characters from the current cursor position to the end of the line one space to the
right. A space character is placed in the current cursor position. The character on the
end of the line is removed.

For information on how to remove a character from a line of text please refer to the
description of the 'DC' (delete character) mnemonic.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

The mnemonics named 'Kx' where x is a letter hexadecimal number, enable you to specify foreground or
background colors. In most cases this is a three-step process. First, you specify the 'KW' or 'KY'
mnemonic, then one of the mnemonics that range from 'K0' through 'KF', and finish the foreground or
background color specification with the 'KX' or 'KZ' mnemonic.

'K0' contains the specification for the color black. This specification occupies the middle
of a command to begin a foreground or background color. The first part of the
sequence is contained in the 'KW' or 'KY' mnemonic and the last part of the
sequence is contained in the 'KX' or 'KZ' mnemonic.

'K1' contains the specification for the color light blue. This specification occupies the
middle of a command to begin a foreground or background color. The first part of the
sequence is contained in the 'KW' or 'KY' mnemonic and the last part of the
sequence is contained in the 'KX' or 'KZ' mnemonic.

'K2' contains the specification for the color light green. This specification occupies the
middle of a command to begin a foreground or background color. The first part of the
sequence is contained in the 'KW' or 'KY' mnemonic and the last part of the
sequence is contained in the 'KX' or 'KZ' mnemonic.

53
Copyright  2014 Thoroughbred Software International, Inc.

'K3' contains the specification for the color light cyan. This specification occupies the
middle of a command to begin a foreground or background color. The first part of the
sequence is contained in the 'KW' or 'KY' mnemonic and the last part of the
sequence is contained in the 'KX' or 'KZ' mnemonic.

'K4' contains the specification for the color light red. This specification occupies the
middle of a command to begin a foreground or background color. The first part of the
sequence is contained in the 'KW' or 'KY' mnemonic and the last part of the
sequence is contained in the 'KX' or 'KZ' mnemonic.

'K5' contains the specification for the color light magenta. This specification occupies the
middle of a command to begin a foreground or background color. The first part of the
sequence is contained in the 'KW' or 'KY' mnemonic and the last part of the
sequence is contained in the 'KX' or 'KZ' mnemonic.

'K6' contains the specification for the color yellow. This specification occupies the middle
of a command to begin a foreground or background color. The first part of the
sequence is contained in the 'KW' or 'KY' mnemonic and the last part of the
sequence is contained in the 'KX' or 'KZ' mnemonic.

'K7' contains the specification for the color light gray. This specification occupies the
middle of a command to begin a foreground or background color. The first part of the
sequence is contained in the 'KW' or 'KY' mnemonic and the last part of the
sequence is contained in the 'KX' or 'KZ' mnemonic.

'K8' contains the specification for the color gray. This specification occupies the middle of
a command to begin a foreground or background color. The first part of the sequence
is contained in the 'KW' or 'KY' mnemonic and the last part of the sequence is
contained in the 'KX' or 'KZ' mnemonic.

'K9' contains the specification for the color blue. This specification occupies the middle of
a command to begin a foreground or background color. The first part of the sequence
is contained in the 'KW' or 'KY' mnemonic and the last part of the sequence is
contained in the 'KX' or 'KZ' mnemonic.

'KA' contains the specification for the color green. This specification occupies the middle
of a command to begin a foreground or background color. The first part of the
sequence is contained in the 'KW' or 'KY' mnemonic and the last part of the
sequence is contained in the 'KX' or 'KZ' mnemonic.

'KB' contains the specification for the color cyan. This specification occupies the middle
of a command to begin a foreground or background color. The first part of the
sequence is contained in the 'KW' or 'KY' mnemonic and the last part of the
sequence is contained in the 'KX' or 'KZ' mnemonic.

'KC' contains the specification for the color red. This specification occupies the middle of
a command to begin a foreground or background color. The first part of the sequence
is contained in the 'KW' or 'KY' mnemonic and the last part of the sequence is
contained in the 'KX' or 'KZ' mnemonic.

54
Copyright  2014 Thoroughbred Software International, Inc.

'KD' contains the specification for the color magenta. This specification occupies the
middle of a command to begin a foreground or background color. The first part of the
sequence is contained in the 'KW' or 'KY' mnemonic and the last part of the
sequence is contained in the 'KX' or 'KZ' mnemonic.

'KE' contains the specification for the color brown. This specification occupies the middle
of a command to begin a foreground or background color. The first part of the
sequence is contained in the 'KW' or 'KY' mnemonic and the last part of the
sequence is contained in the 'KX' or 'KZ' mnemonic.

'KF' contains the specification for the color white. This specification occupies the middle
of a command to begin a foreground or background color. The first part of the
sequence is contained in the 'KW' or 'KY' mnemonic and the last part of the
sequence is contained in the 'KX' or 'KZ' mnemonic.

'KW' contains a value that depends on the value specified for the 'A9' mnemonic. In most
cases, it contains the first part of the character sequence that starts the foreground
color. The second part of the sequence is contained in one of the mnemonics that
range from 'K0' through 'KF' and the last part of the sequence is contained in the
'KX' mnemonic.

'KX' contains a value that depends on the value specified for the 'A9' mnemonic. In most
cases, it contains the last part of the character sequence that starts the foreground
color. The first part of the sequence is contained in the 'KW' mnemonic and the
middle part of the sequence is contained in one of the mnemonics that range from
'K0' through 'KF'.

'KY' contains a value that depends on the value specified for the 'A9' mnemonic. In most
cases, it contains the first part of the character sequence that starts the background
color. The second part of the sequence is contained in one of the mnemonics that
range from 'K0' through 'KF' and the last part of the sequence is contained in the
'KZ' mnemonic.

'KZ' contains a value that depends on the value specified for the 'A9' mnemonic. In most
cases, it contains the last part of the character sequence that starts the background
color. The first part of the sequence is contained in the 'KY' mnemonic and the
middle part of the sequence is contained in one of the mnemonics that range form
'K0' through 'KF'.

Some of the mnemonics named 'Lx', where x is a letter or hexadecimal number, enable you to perform
operations on individual lines.

'LBLUE' contains a command that changes the current foreground color to light blue. A
terminal that does not provide this color will not respond to the command to change
color.

'LC' is short for lowercase. This mnemonic contains a command that sends all characters
typed in Thoroughbred Basic Console Mode to Thoroughbred Basic without
interpretation. Lowercase characters are not converted to uppercase.

55
Copyright  2014 Thoroughbred Software International, Inc.

The 'UC' (uppercase) mnemonic contains a command that converts all characters
typed in Thoroughbred Basic Console Mode to uppercase.

This mnemonic is defined by Thoroughbred Basic. Do not define this value or
specify a value for it.

'LCYAN' contains a command that changes the current foreground color to light cyan. A
terminal that does not provide this color will not respond to the command to change
color.

'LD' is short for line delete. This mnemonic can contain a command that removes the line
that contains the cursor. The lines below the deleted line are scrolled up one line.

The 'CL' (clear to end of line) mnemonic can contain a command that removes all
the characters from the current cursor position through the end of the line. The 'LI'
(line insert) mnemonic can contain a command that creates a new line on the screen
or in the Thoroughbred Basic Window.

'LF' is short for line feed. This mnemonic can contain a command that sends the line feed
character sequence. The cursor on the screen or in the Thoroughbred Basic Window
moves down one line to the leftmost character position. If needed, Thoroughbred
Basic will scroll up to display the line that contains the cursor.

The 'CR' (carriage return) mnemonic can contain a command that sends the carriage
return character.

'LGRAY' contains a command that changes the current foreground color to light gray. A
terminal that does not provide this color will not respond to the command to change
color.

'LGREEN' contains a command that changes the current foreground color to light green. A
terminal that does not provide this color will not respond to the command to change
color.

'LI' is short for line insert. This mnemonic can contain a command that inserts a new line
on the screen or into the Thoroughbred Basic Window. The line that contains the
cursor and all the lines below are pushed down one line, the new line is filled with
space characters, and the cursor is placed on the new line.

The 'LD' (line delete) mnemonic can contain a command that removes the line that
contains the cursor from the screen or the Thoroughbred Basic Window.

'LMAGENTA' contains a command that changes the current foreground color to light magenta. A
terminal that does not provide this color will not respond to the command to change
color.

'LRED' contains a command that changes the current foreground color to light red. A
terminal that does not provide this color will not respond to the command to change
color.

56
Copyright  2014 Thoroughbred Software International, Inc.

The mnemonics named 'Mx', where x is a letter, enable you to perform a variety of functions.

'MAGENTA' contains a command that changes the current foreground color to magenta. A
terminal that does not provide this color will not respond to the command to change
color.

'MB' Mouse Begin will turn on the mouse.

'MD' Mouse Scroll Down visual. Developer defined terminal table mnemonic for
Dictionary-IV/OPENworkshop only. The defined escape sequence will be printed in
the bottom border of a BASIC window indicating that a click in this region will
perform a Scroll Down function.

'ME' Mouse End will turn off the mouse.

'MH' Mouse Home visual. Developer defined terminal table mnemonic for
Dictionary-IV/OPENworkshop only. The defined escape sequence will be in the
upper left corner border of a BASIC window indicating that a click in this region will
perform a Home function.

'ML' Mouse Tab Left visual. Developer defined terminal table mnemonic for
Dictionary-IV/OPENworkshop only. The defined escape sequence will be printed left
border of a BASIC window indicating that a click in this region will perform a Tab
Left (Back-Tab) function.

'MN' is short for mapping on. This mnemonic contains a command that causes output sent
to the terminal is processed by the Thoroughbred Basic Windows Manager, which
updates its image of the screen in memory. This is the default for terminals that run
under Thoroughbred Basic Windows.

The 'MO' (mapping off) mnemonic contains a command that causes the
Thoroughbred Basic Windows Manager to process output to the terminal without
updating its image of the screen in memory.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'MO' is short for mapping off. This mnemonic contains a command that causes the
Thoroughbred Basic Windows Manager to process output to the terminal without
updating its image of the screen in memory. You can use this mnemonic to execute
terminal routines, such as loading a Status Line, without affecting the rest of the
display.

Ordinarily, Thoroughbred Basic Windows uses the 'CS' (clear screen) to clear the
current Thoroughbred Basic Window. If the 'CS' mnemonic is issued after the 'MO'
mnemonic, the whole screen is cleared. You can use the Thoroughbred Basic
WINDOW REFRESH directive or the 'RS' (refresh screen) mnemonic to restore the
screen as it appeared before the 'MO' mnemonic was issued. For more information
on the WINDOW REFRESH directive please refer to the Thoroughbred Basic
Language Reference.

57
Copyright  2014 Thoroughbred Software International, Inc.

The 'MN' (mapping on) mnemonic contains a command that causes output sent to
the terminal is processed by the Thoroughbred Basic Windows Manager, which
updates its image of the screen in memory.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'MR' Mouse Tab Right visual. Developer defined terminal table mnemonic for
Dictionary-IV/OPENworkshop only. The defined escape sequence will be printed
right border of a BASIC window indicating that a click in this region will perform a
Tab Right (Tab) function.

'MU' Mouse Scroll Up visual. Developer defined terminal table mnemonic for
Dictionary-IV/OPENworkshop only. The defined escape sequence will be printed top
border of a BASIC window indicating that a click in this region will perform a Scroll
Up function.

'MX' Mouse Exit visual. Developer defined terminal table mnemonic for
Dictionary-IV/OPENworkshop only. The defined escape sequence will be printed
upper right corner border of a BASIC window indicating that a click in this region
will perform a F4 (Exit) function.

The mnemonics named 'Ox', where x is a letter, enable you to perform a variety of functions.

TbredComm opens external Window files such as image files, Word documents, Excel spreadsheets, etc.
The file will be opened with the default application defined by the file extension. For example if .jpg files
are associated with a browser, that browser will be used to open all .jpg image files.

'OB' Begin Open.

'OE' End Open.

Used with the PRINT Directive. For example:

PRINT 'OB', "file-name", 'OE'

If the path to the file is not defined in the path variable you must supply the full path name.

The mnemonics named 'Px', where x is a letter, enable you to perform a variety of functions.

'PB' is short for print buffer. This mnemonic contains a command that transmits the
contents of the print buffer, and then empties it. If the print buffer is already empty,
Thoroughbred Basic issues ERR=29.

Do not define this mnemonic in a TCONFIGx file.

'PE' is short for print end. This mnemonic contains a command that issues the print end
character sequence for the terminal device on this channel. In most cases; these are
the codes for transparent print end.

58
Copyright  2014 Thoroughbred Software International, Inc.

The 'PS' (print start) mnemonic contains a command that issues the print start
character sequence for the terminal device on this channel.

'POP' contains a command that deletes the active Thoroughbred Basic Window and
refreshes the screen.

In most cases, this command, which performs the same operations as the
Thoroughbred Basic WINDOW POP directive, is used in Thoroughbred Basic
PRINT statements. For more information on WINDOW POP and PRINT please
refer to the Thoroughbred Basic Language Reference.

The 'PUSH' mnemonic contains a command that creates a new Thoroughbred Basic
Window, which has attributes identical to the active Thoroughbred Basic Window,
and places the cursor in the new Thoroughbred Basic Window.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'PS' is short for print start. This mnemonic contains a command that issues the print start
character sequence for the terminal device on this channel. In most cases, these are
the codes for Transparent Print Start.

The 'PE' (print end) mnemonic contains a command that issues the print end
character sequence for the terminal device on this channel.

'PUSH' contains a command that creates a duplicate of the active Thoroughbred Basic
Window. The new Thoroughbred Basic Window acquires all the attributes of the
original Thoroughbred Basic Window. The cursor is placed in the new Thoroughbred
Basic Window.

In most cases, this command, which performs the same operations as the
Thoroughbred Basic WINDOW PUSH directive, is used in Thoroughbred Basic
PRINT statements. For more information on WINDOW PUSH and PRINT please
refer to the Thoroughbred Basic Language Reference.

The 'POP' mnemonic contains a command that deletes the active Thoroughbred
Basic Window and refreshes the screen.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

Some of the mnemonics named 'Rx', where x is a letter, enable you to read displayed characters and
return them to your program.

'RB' is short for ring the bell. This mnemonic can contain a command that rings the
terminal bell.

'RED' contains a command that changes the current foreground color to red. A terminal that
does not provide this color will not respond to the command to change color.

59
Copyright  2014 Thoroughbred Software International, Inc.

'RL' is short for read line. This mnemonic can contain a command that returns the
characters on the line that contains the cursor.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'RP' is short for read page. This mnemonic can contain a command that returns all of the
characters from the one that occupies the cursor position through the character that
occupies the last position in the Thoroughbred Basic Window.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'RS' is short for refresh screen. This mnemonic can contain a command that restores the
screen according to the map maintained by the Thoroughbred Basic Windows
Manager.

This command is identical to the Thoroughbred Basic WINDOW REFRESH
directive. For more information on WINDOW REFRESH please refer to the
Thoroughbred Basic Language Reference.

In some cases, this command follows the command specified for the 'MO' (mapping
off) mnemonic. For more information, please refer to the description of the 'MO'
mnemonic.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

The mnemonics named 'Sx', where x is a letter, enable you to perform a variety of functions.

'SB' is short for set to background. This mnemonic can contain a command that causes the
data that follows to display on the screen or in the Thoroughbred Basic Window in
background intensity.

'SETBWC' is short for SET Base Window Colors. This mnemonic is used to set the background
and foreground colors of the base terminal window. The mnemonic must be followed
by a one byte color code. Color codes are documented in the Thoroughbred Basic
Language Reference under WINDOW COLOR. For example, ‘SETBWC’,$F0$ or
‘SETBWC’,CHR(240) set the terminal to black characters on a white background.
This mnemonic is ignored if the selected Terminal Table does not specify color
support or if the background and foreground colors are the same. The setting will be
effective the next time the base window is cleared, usually with a ‘WC’ mnemonic.

The 'SF' mnemonic can contain a command that causes the data that follows to
display in foreground intensity.

'SF' is short for set to foreground. This mnemonic can contain a command that causes the
data that follows to display on the screen or in the Thoroughbred Basic Window in
foreground intensity.

60
Copyright  2014 Thoroughbred Software International, Inc.

The 'SB' mnemonic can contain a command that causes the data that follows to
display in background intensity.

'SL' is short for start load. This mnemonic can contain a command that begins loading a
terminal table to the terminal.

The 'EL' (end load) mnemonic can contain a command that stops the loading of a
terminal table to a terminal.

'SWAP' contains a command that makes the previously active Thoroughbred Basic Window
active. You can use this mnemonic to move back and forth between two
Thoroughbred Basic Windows.

In most cases, this command, which performs the same operations as the
Thoroughbred Basic WINDOW SWAP directive, is used in Thoroughbred Basic
PRINT statements. For more information on WINDOW SWAP and PRINT please
refer to the Thoroughbred Basic Language Reference.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

The 'TR' mnemonic enables you to read all the characters in a Thoroughbred Basic Window.

'TR' is short for terminal read. This mnemonic contains a command that reads the active
Thoroughbred Basic Window from top to bottom and left to right and returns its
contents as a character string.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

The 'UC' mnemonic enables Thoroughbred Basic to treat all characters as uppercase characters.

'UC' is short for uppercase. This mnemonic contains a command that converts all
characters typed in Thoroughbred Basic Console Mode to uppercase before sending
them to Thoroughbred Basic.

The 'LC' (lowercase) mnemonic contains a command that sends all characters typed
in Thoroughbred Basic Console Mode to Thoroughbred Basic without interpretation.

This mnemonic is defined by Thoroughbred Basic. Do not define this value or
specify a value for it.

The 'VT' mnemonic enables you to use a vertical tab on your terminal screen.

'VT' is short for vertical tab. This mnemonic can contain a command that moves the
output position one vertical tab from the current line. In most cases, the specified
value is the character sequence that moves the cursor up one line.

61
Copyright  2014 Thoroughbred Software International, Inc.

If no value is specified for this mnemonic the Thoroughbred Basic WINDOW
CREATE directive option PAINTMODE=CIRCLEIN is replaced by
PAINTMODE=MIDDLEOUT. For more information on WINDOW CREATE
and its PAINTMODE= option please refer to the Thoroughbred Basic Language
Reference.

Some of the mnemonics named 'Wx', where x is a letter, enable you to perform operations on
Thoroughbred Basic Windows.

'WC' is short for windows clear. This mnemonic contains a command that removes all the
Thoroughbred Basic Windows, except for the base Thoroughbred Basic Window,
and clears the screen.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'WHITE' contains a command that changes the current foreground color to white. A terminal
that does not provide this color will not respond to the command to change color.

'WN' is short for Thoroughbred Basic Windows on. This mnemonic can contain a
command that restores Thoroughbred Basic Windows to the status and conditions
that were current before the command specified for the 'WO' (Thoroughbred Basic
Windows off) mnemonic was issued.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

'WO' is short for Thoroughbred Basic Windows off. This mnemonic contains a command
that causes following commands to refer to the base Thoroughbred Basic Window,
which is the full screen. You can use this command to place data on the full screen
without having to change current Thoroughbred Basic Window status or stack order.

No Thoroughbred Basic WINDOW directives or WIN functions can be issued until
the command specified for the 'WN' (Thoroughbred Basic Windows on) is issued.
The 'WN' mnemonic contains a command that returns the terminal to Thoroughbred
Basic Windows mode.

Thoroughbred Basic Windows defines this mnemonic. Do not define this value or
specify a value for it.

The 'YELLOW' mnemonic enables you to specify yellow as the foreground color.

'YELLOW' contains a command that changes the current foreground color to yellow. A terminal
that does not provide this color will not respond to the command to change color.

For information on how to configure and specify terminal mnemonics, please refer to the Thoroughbred
Basic Customization and Tuning Guide.

62
Copyright  2014 Thoroughbred Software International, Inc.

Printer mnemonics

Printer mnemonics are variables that can be interpreted by a printer driver. Use of printer mnemonics can
speed application development by insuring that programmers will not have to remember or look up code
sequences, by providing naming conventions for actions that can occur on a number of site printers, and
by helping programmers produce more readable code. These mnemonics are specified and defined in
printer mnemonic tables.

The default printer mnemonic table consists of the following mnemonic codes and escape sequences:

Line feed LF $0D0A$
Carriage return CR $0D$
Form feed FF $0C$
Escape ES $1B$
Ring bell RB 07
Expanded print EP N/A

These printer mnemonics are analogous to terminal mnemonics described in the preceding subsection. For
example, the 'LF' printer mnemonic is equivalent to the 'LF' terminal mnemonic. For more information
on any of these printer mnemonics, please refer to the corresponding terminal mnemonic.

Starting with Thoroughbred Basic 8.2, you can create and load printer mnemonic tables other than the
default printer table already installed with your system. A mnemonic table is made up of mnemonic
entries sorted in ascending order based on the length of each entry's mnemonic code.

For more information on printer mnemonics, and on how to build and load new printer mnemonic tables,
please refer to the Thoroughbred Basic Customization and Tuning Guide.

63
Copyright  2014 Thoroughbred Software International, Inc.

How Thoroughbred Basic locates a file

This section describes how Thoroughbred Basic release level 8.1 or a later release locates a file.

Directives that cause Thoroughbred Basic to locate a file

Directives that create files also cause Thoroughbred Basic to try and locate a file with the same name.

Some directives that create files: DIRECT, FILE, INDEXED, INITFILE, MSORT, PROGRAM,
PSAVE new program, RENAME, SAVE new program, SERIAL, SORT, TEXT, TISAM.

Some directives that locate files: ADD, ADDR, CALL, ENCRYPT, ERASE, LOAD, OPEN, PSAVE
existing program, RUN, SAVE existing program, START with program.

Where Thoroughbred Basic locates the file

Thoroughbred Basic locates or creates a file by using the directory name plus the file name.
Thoroughbred Basic determines the directory name based on whether the disk is defined as a logical disk
directory, a subdirectory, or a hierarchical directory. Disks are specified in initial program load (IPL)
files, which contain definitions that are loaded into memory when a user starts Thoroughbred Basic.

Logical Disk Directories: The directory name is specified in the disk DEV statement of the IPL file.

Subdirectories (Special Performance Feature): A special procedure is used to determine the directory
name, using the directory name in the IPL file, its subdirectories, and the file name.

Hierarchical Directories: A special procedure is used to determine the directory name, using the current
directory, the PREFIX variable, and/or the file name.

For more information on directories and IPL files, please refer to the chapter on System Files in the
Thoroughbred Basic Customization and Tuning Guide.

Steps Thoroughbred Basic uses to locate a file

Disks are searched in the order in which they appear in the IPL file. If the disk is disabled, it is skipped. If
the search encounters a disk defined as having hierarchical directories or subdirectories, a special
procedure is used to search for the file.

If the disk directory is defined as a logical disk directory, Thoroughbred Basic attempts to locate or create
the file using the directory name specified in the disk DEV statement of the IPL file and the file name
specified in the program.

If the disk directory is defined as a hierarchical directory, Thoroughbred Basic attempts to locate the file:

• By Full-path File Name: If the file name begins with a slash, Thoroughbred Basic assumes that the
file name contains a full directory path (full-path file name), and the full-path file name, exactly as
specified, is used to create or locate the file. If the file cannot be located on this disk, no further
methods are used to create or locate the file on this disk.

64
Copyright  2014 Thoroughbred Software International, Inc.

• By Current Directory: If the file name does not begin with a slash, the current directory is used to
create or locate the file. If the file is not located, the next step is taken.

• By PREFIX: If the file cannot be located in the current directory, then the alternate path names in
sequential order (left to right) as found in the value of the PREFIX system variable are used to locate
the file.

Note: The PREFIX system variable is never used to create a file.

If the disk directory is defined as having subdirectories, Thoroughbred Basic attempts to locate the file:

• In a Subdirectory Whose Name Matches the First Characters of the File Name: The first
characters of the file name (full-path, partial-path, or no-path) are treated as a prefix that specifies the
subdirectory. A subdirectory name can be from 2 through 9 characters long. If the file is not located
or the subdirectory does not exist, the next step is taken.

• In the USR Subdirectory If It Exists: The USR subdirectory is used if the first characters of the file
name did not match a subdirectory name. If the file is not found or the USR subdirectory does not
exist, the next step is taken.

For more information on subdirectories, hierarchical directories, and IPL files, please refer to the
Thoroughbred Basic Customization and Tuning Guide.

65
Copyright  2014 Thoroughbred Software International, Inc.

Transaction processing

Thoroughbred Basic offers the ability to perform transaction processing within a Thoroughbred Basic
program.

Transaction processing includes the means to initiate transaction entries to a log file, which has the ability
to reconstruct a data file from entries made. Transaction processing gives you the option to maintain a
running log file ensuring that all or none of the database changes are made permanent until a
COMMITment is made. A ROLLBACK to the point where transaction processing started is also
permitted. This is useful in the event of an unexpected error. The entries in the log file are a journal of all
transaction entries.

For more information on COMMIT, LOG CLOSE, LOG OPEN, ROLLBACK, and TRANSACTION
BEGIN directives, please refer to the Thoroughbred Basic Reference Manual.

For example you would open the log file:

00010 LOG CLOSE
00020 LOG OPEN “LOG”+FID(0), “REWIND”
00030 OPEN(2) “DIRECTFILE”
00040 TRANSACTION BEGIN

Begin your transactions with the option to rollback or commit:

00110 TRANSACTION BEGIN
00120 CH1=UNT; OPEN(CH1) “MSORTFILE”
00130 CH2=UNT; OPEN(CH2) “DIRECTFILE”
00140 CLEAR ERC;
 K$ = KEY(CH1);
 READ RECORD(CH1) A$;
 WRITE RECORD (CH2,KEY=K$,ERC=99) A$;
 REMOVE(CH1,KEY=K$,ERC=99);
 IF ERC
 ROLLBACK
 ELSE
 COMMIT
 FI

66
Copyright  2014 Thoroughbred Software International, Inc.

5. Thoroughbred Dictionary-IV Interface

Thoroughbred Dictionary-IV enables you to create a system dictionary, which provides a way to define
and maintain specifications in a central location. The dictionary enables you to design and specify system
resources that can be used by many Thoroughbred Basic programs. Modifying a Dictionary-IV resource
implements the changes in every program that uses the resource. Thoroughbred Basic and Dictionary-IV
are available in one package starting with Thoroughbred Basic 8.1.

This chapter contains the following sections:

• The system dictionary provides an overview of the services provided by a system dictionary.

• Dictionary-IV API Services provides information on how Thoroughbred Basic programs can use the
resources defined in the system dictionary.

• Formats and data names provide more information on how formats and data names can be defined
in Dictionary-IV and used in Thoroughbred Basic programs.

The system dictionary

The system dictionary is an external, centralized storehouse of structured information that can be shared
by any number of programs. The system dictionary provides the means to build, change, delete, and
manipulate the following resources:

• Data
• Help
• Messages
• Reports
• Formats
• Menus
• Screens
• Views

These resources are building blocks for software development. When working on the organization and
planning stages of program development, the designer normally sets down some rules for the layout and
format of the development effort. This planning assures that all programmers use the same organization
for record formats, file layouts, screen layouts, menus, message layouts, on-line help features, and so on.

With some programming languages, like COBOL, these rules are normally included in every program. If
a change is needed, each program must be changed and recompiled. If there were a way to externalize
these rules, then a change in the rules would not affect existing programs.

67
Copyright  2014 Thoroughbred Software International, Inc.

With Thoroughbred Basic the system dictionary concept is built-in but is external to the actual data. The
system dictionary contains information about the organization of data for each installation.

In short, the system dictionary and its library of utility routines:

• Automatically perform all of the necessary file maintenance.

• Reduce the amount of coding necessary.

• Improve the consistency of definitions.

• Eliminate redundancy.

• Allow resource sharing.

• Encourage structured design.

• Simplify the maintenance of procedures and definitions.

For more information on how to use the system dictionary, and how to define resources your
Thoroughbred Basic programs can use, please refer to the Dictionary-IV Reference Manual. For more
information on ways to use these resources in programs, please refer to the following sections.

Thoroughbred Dictionary-IV API Services

The Dictionary-IV API Services is a set of public programs that call and use system resources defined in
Dictionary-IV. These public programs can be used in Thoroughbred Basic Console Mode or
Thoroughbred Basic Run Mode.

To use the Dictionary-IV API Services, Thoroughbred Dictionary-IV must be installed on your system.
Your terminal must be set up to use Thoroughbred Basic Windows.

The Dictionary-IV API Services include the following programs:

OO41 A public program (METHOD) you can use to READ and WRITE the following text
objects:

• Text fields defined in a Dictionary-IV format definition and link definition. Only the
new window style text is supported.

• Source-IV source documents.

68
Copyright  2014 Thoroughbred Software International, Inc.

• Window style Dictionary-IV help definitions.

For more information on the OO41 API Service, please refer to the subsection on OO41
Details below.

OOIO activates/deactivates the Trigger Method for all data files on the trigger list.

This causes a lookup in OOLIOT1 to match the trigger-list-name. Then in OOLIOT0 is a
data-file-list under that trigger-list-name. On each entry in the data-file-list for that
trigger-list-name is a Data-File/Trigger-Method pair.

For more information see the 3GL Trigger section following.

8CALC An on-line calculator that displays in the same fashion as a hand-held model. The
calculator performs standard mathematical functions. In Thoroughbred Basic Run Mode,
the total generated on the calculator can be returned to a Thoroughbred Basic program.

8CLOSE Closes a screen, view, or format.

8COLORP Selects colors for Thoroughbred Basic Windows.

8FILEA Creates, erases, or renames a file.

8FILEB Dynamically expands, modifies, copies, or moves a file.

8FORMAT Reads, adds or updates formats defined under Dictionary-IV.

8HELP Prints an on-line help window.

8INPUT Inputs screen data from a defined screen under Thoroughbred Dictionary-IV.

8MENU Prints and selects options from a Thoroughbred Dictionary-IV menu.

8MOVE Moves a window on the screen.

8MSG Processes operator messages. Several types of operator messages can be defined in
Thoroughbred Dictionary-IV.

8OPENP Opens a printer, using the definitions within Thoroughbred Dictionary-IV, for special
mnemonics and control sequences.

8OPENS Opens a Thoroughbred Dictionary-IV defined screen, view, or format.

8PRINT Prints a Thoroughbred Dictionary-IV defined screen or screen data.

8RSIZE Resizes Thoroughbred Basic Windows.

8TEXTF Maintains text records for a text field defined by a format under Thoroughbred
Dictionary-IV.

69
Copyright  2014 Thoroughbred Software International, Inc.

8TEXTR Reads text records for a text field defined by a format under Thoroughbred
Dictionary-IV.

8VIEWF Prints and selects records from a data file.

8VIEWT Prints and selects options from an internal table.

8ZPHC Prints a hard copy of the screen.

These public programs enable you to reference data files, screens, columns of data file views, menus, and
messages in a comfortable environment where certain types of knowledge are not assumed. When you
open a data file, you do not have to know fields the data file contains. When you open a screen, you do
not have to know how many fields the screen contains, where the screen is physically located on the
terminal, or whether the screen is located in a Thoroughbred Basic Window.

For example, to open a data entry screen defined in Dictionary-IV, your Thoroughbred Basic program can
use the CALL command to execute the 8OPEN public program. To enable your program to accept the
information a user types on that screen, your program can use the CALL command to execute the
8INPUT public program. If new requirements force a change to the data entry screen, you can use
Dictionary-IV to change the screen definition. You do not have to change the code in any Thoroughbred
Basic program that uses the screen.

To execute one of these public programs, please refer to the appropriate command syntax below:

READ or WRITE Text Objects

CALL "OO41",TEXT$[ALL],LNK$[ALL],LNK[ALL]

Note: For more information on the OO41 API Service, please refer to the subsection on OO41
Details below.

Load or Drop Trigger Definition

Note: For more information on the OOIO API Service, please refer to the subsection on 3GL
Trigger below.

On-line Calculator

CALL "8CALC", VALUE, VALUE$,]SYSV$

Closes a Screen, View, or Format

CALL "8CLOSE", FUNC$, SCREEN$[ALL], FORMAT$[ALL],]SYSV$

Selects Colors for Thoroughbred Basic Windows

CALL "8COLORP", FUNC$, ATTR, COLR,]SYSV$

Creates, Erases, or Renames Files

CALL "8FILEA", FUNC$, PARM$,]SYSV$

70
Copyright  2014 Thoroughbred Software International, Inc.

Expands, Modifies, Copies, or Moves Files

CALL "8FILEB", FUNC$,]SYSV$

Reads, Adds, or Updates Dictionary-IV Formats

CALL "8FORMAT", MSG$[ALL], RV$,]SYSV$

Prints Help Window

CALL "8HELP", FUNC$, HELP$, HELPTXT$,]SYSV$

Inputs Screen Data

CALL "8INPUT", FUNC$, SCREEN$[ALL], FORMAT$[ALL], DATA$,]SYSV$

Prints and Selects Options from a Menu

CALL "8MENU", FUNC$, MENU$, MENUSEL$,]SYSV$, PPA$[ALL]

Moves a window on screen

CALL "8MOVE", MPARMS$,]SYSV$

Processes Operator Messages

CALL "8MSG", FUNC$, MT$[ALL], C,]SYSV$

Opens Printer

CALL "8OPENP", FUNC$, PT$[ALL], PCH,]SYSV$

Opens Screen,View, or Format

CALL "8OPENS", FUNC$, SCREEN$[ALL], FORMAT$[ALL], DATA$,]SYSV$

Prints Screen or Screen Data

CALL "8PRINT", FUNC$, SCREEN$[ALL], FORMAT$[ALL], DATA$,]SYSV$

Resizes Thoroughbred Basic Windows

CALL ""8RSIZE", MPARMS$,]SYSV$

Maintains Text Records from a Data File

CALL "8TEXTF", FUNC$, SCREEN$[ALL], FORMAT$[ALL], C,]SYSV$

Reads Text Records from a Data File

CALL "8TEXTR", FUNC$, TPARM$[ALL], TEXT$[ALL],]SYSV$

71
Copyright  2014 Thoroughbred Software International, Inc.

Prints and Selects Records from a Data File

CALL "8VIEWF", FUNC$, SCREEN$[ALL], FORMAT$[ALL], C,]SYSV$

Prints and Selects Options from an Internal Table

CALL "8VIEWT", FUNC$, VIEWT$[ALL],]SYSV$

Prints Hard Copy of Screen

CALL "8ZPHC",FUNC$, TH$,TEXT$[ALL], HDNG$[ALL], PT$[ALL], PC,]SYSV$

For example, you can try the calculator in Thoroughbred Basic Console Mode. Use the following
command:

CALL "8CALC", A, A$,]SYSV$

You can press the F6 key to display on-line help. When you want to stop using the calculator, you can
press the F4 key.

For more information on the Dictionary-IV API Services, you can use the on-line help system. To display
on-line help, type /8H on any Dictionary-IV menu and press the Enter key.

OO41 Details

OO41 supports reading and writing of text only in the Thoroughbred window style. For more
information, please refer to the Dictionary-IV Developer Guide. For an example of how to use OO41 in a
Thoroughbred Basic program, please refer to the following subsection.

OO41 assumes the necessary Dictionary-IV tables have been built. If your program executes a BEGIN or
if you execute your program prior to running ID, you must include the following before performing any
OPEN commands and prior to calling OO41:

CALL "8ZPSYS",]SYSV$

Then, you may:

CALL "OO41",TEXT$[ALL],LNK$[ALL],LNK[ALL]

where:

TEXT$[ALL]

TEXT$[0]

READ[LINK link-name, key-value, text-ID[LLLL.DDDDDDDD|LLDDDDDD[,L]]]

WRITE[LINK link-name, key-value, text-ID
[LLLL.DDDDDDDD[,T][TITLE]|LLDDDDDD[,L][TITLE]]]

72
Copyright  2014 Thoroughbred Software International, Inc.

link-name defines the data file associated with the text field. OO41 will invoke the standard
open link routine to retrieve the appropriate link information and open the
necessary files. For more information, please refer to the descriptions of
LNK$[ALL] and LNK[ALL].

key-value is the primary key value for the text field. It does not include the special
characters used to construct the full text field key (the FF prefix, the text field
ID, or the text field sequence number).

text-ID is defined in the format.

LLLL.DDDDDDDD is the four-byte Source-IV library name and the eight-byte Source-IV source
document name. The . (period) that separates the library name from the source
document name is required.

,T allows the program type to be specified. If the program type is not specified, the
S type is the default.

LLDDDDDD is the two-byte window help library name and the six-byte window help
definition name. There is no . (period) separating the library name from the
definition name.

,L is the one-byte language code for multiple spoken languages. This is not the
two-character language code description typically displayed. In addition, the ,
(comma) that separates the help definition name and the language code is
required. If the language code is not supplied, English is the default.

Valid values for L are:

31 EN
36 FR
$3B$ GR
40 IT
45 SP
$4A$ DU
$4F$ SW
54 NR
59 DM
$5E$ FN
63 X1
68 X2

TEXT$[1-N] is text to be written or read. Each entry represents a row of text. This is
uncompressed text. It does not contain window maps.

LNK$[ALL] contains link information. It is for internal use only. It improves performance
when multiple READ or WRITE operations are required. Do not dimension this
array in your program. Do not alter the contents of this array. OO41 will
dimension and populate this array.

73
Copyright  2014 Thoroughbred Software International, Inc.

LNK[ALL] contains link information. LNK[2] contains the channel number used for the text
field READ/WRITE routines. This channel should be closed by your program
after all text field processing is complete.

CLOSE(LNK[2])

Except for LNK[2], this is for internal use only. It improves performance when
multiple READ or WRITE operations are required. Do not dimension this array
in your program. Do not alter the contents of this array. OO41 will dimension
and populate this array.

OO41 Example

The following sample code illustrates how OO41 can be used in a Thoroughbred Basic program. For
more information on the directives used in this example, please refer to the Thoroughbred Basic
Language Reference and to the previous subsection.

00010 REM "Example CALL to OO41"

* This program is an example of using the Dictionary-IV OO41 API
* Service to write text fields. OO41 can write text fields to any
* Thoroughbred file type that supports text fields.

* This program READs records from the DALTEST1 DIRECT file and WRITEs
* a record to the DALTEST2 DIRECT file. Then, the program calls OO41
* to write the corresponding text record to DALTEST2. The text field
* for DALTEST2 is composed of the DESC1, DESC2, and DESC3 string
* fields from DALTEST1.

* FORMAT DALTEST1:
* KEY-FIELD, DESC1, DESC2, DESC3, STR-FIELD

* FORMAT DALTEST2:
* KEY-FIELD, TEXT-FIELD, STR-FIELD

00100 BEGIN; ! Clear the environment.
 PRINT 'WC'; ! Clear the screen.

 ! The following call to 8ZPSYS
 ! is only necessary from a
 ! Thoroughbred Basic program
 ! that contains a BEGIN or is
 ! executed prior to running
 ! "ID".

74
Copyright  2014 Thoroughbred Software International, Inc.

 CALL "8ZPSYS",]SYSV$; ! Call to initialize
 ! Dictionary-IV internals.
 PRINT "creating text fields :"; ! Display message on screen.
 U1=UNT; ! Get next available channel.
 OPEN(U1) "DALTEST1"; ! Open first file.
 U2=UNT; ! Get next available channel.
 OPEN(U2) "DALTEST2"; ! Open second file.
 FORMAT INCLUDE #DAFTEST1; ! Include format for 1st file.
 FORMAT INCLUDE #DAFTEST2; ! Include format for 2nd file.
 DIM TEXT$[3]; ! Dimension text array.
 LOOP=1; ! Turn main loop on.

 WHILE LOOP; ! While loop is on,
 READ (U1,ERC=1) #DAFTEST1; ! Read record from DALTEST1,
 IF ERC <> 1 ! If not EOF,
 #DAFTEST2.KEY-FIELD = ! Set the key in
 #DAFTEST1.KEY-FIELD, ! the format area,
 #DAFTEST2.STR-FIELD = ! Set the other
 #DAFTEST1.STR-FIELD; ! appropriate fields,
 WRITE (U2,KEY= ! Write the record
 #DAFTEST.KEY-FIELD) ! for corresponding
 #DAFTEST2; ! text field,
 TEXT$[0]= ! Build text function:
 "WRITE LINK DALTEST2,"+ ! func & link name +
 #DAFTEST2.KEY-FIELD + ! current key value +
 ",A", ! text ID,
 TEXT$[1]= ! Put description field
 #DAFTEST1.DESC1, ! into text array,
 TEXT$[2]= ! Put description field
 #DAFTEST1.DESC2, ! into text array,
 TEXT$[3]= ! Put description field
 #DAFTEST1.DESC3; ! into text array,
 CALL "0041", TEXT$[ALL], ! Call method to
 LNK$[ALL],LNK[ALL]; ! write text field,
 IF TEXT$[0]="." ! If normal termination
 PRINT " ", ! print key of record
 #DAFTEST2.KEY-FIELD ! to process
 ELSE ! Else
 LOOP=0 ! Turn off loop
 FI ! Endif
 ELSE ! Else
 LOOP=0 ! Turn off loop
 FI; ! Endif
 WEND; ! End of loop.

 CLOSE(U1); ! Close DALTEST1.
 CLOSE(U2); ! Close DALTEST2.
 CLOSE(LNK[2]); ! Close DALTEST2 opened for
 ! text field WRITE by open
 ! link routine called by OO41.
 FORMAT DELETE #DAFTEST1; ! Delete format
 END

75
Copyright  2014 Thoroughbred Software International, Inc.

Formats and data names

Thoroughbred Basic programs can include data names and formats defined in Thoroughbred
Dictionary-IV. This enhancement is available starting with Thoroughbred Basic 8.2. This section covers
the following information:

• Background information about formats and data names

• How to include a format or data name in a Thoroughbred Basic program

Physical formats

During file maintenance, formats are used to access data in files. A format is linked to a physical data file
through a link definition. In this context, formats describe a record and the data elements in the record
along with their characteristics, defaults, valid values, and related data entry restrictions.

Formats are also used to define the record layout of a data file. For single format files, every record in the
file has the same layout, meaning that regardless of which record a data element is located in, it is always
located in the same position and has the same characteristics.

For example, the specifications for the data element PHONE (length of 10, integer value, optional entry,
and so on) in the diagram below are the same in every data record.

DATA FILE Data Element
Specifications

NAME ADDRESS PHONE PHONE

name address phone Length of 10

name address phone fixed length

name address phone numeric value

name address phone (Data Element) integer value

name address phone (Data Record) optional entry

name address phone

Type of file, as well as each data element, are determined by a format. Thoroughbred Dictionary-IV
creates a file based on the key status of data elements in a format according to the following rules:

Key Elements in Format Type of File Created

One or more key elements DIRECT file
All elements are keys SORT file
No key elements INDEXED file

76
Copyright  2014 Thoroughbred Software International, Inc.

Logical formats

In menus, screens, or scripts, a format can be used independently of a data file or link. In this context, it is
referred to as a logical format and can function similarly to data names or variables.

In a script, a logical format can be assigned a value, its value can be printed or passed to another script,
and it can generally be manipulated as an item of data in several Thoroughbred Script-IV commands.

A logical format used for a menu has only one data element for menu selection input; the data element is
defined just as it is in any format, but it is not linked to a data file. A one-data-element format
(IDMENUIN) is provided in Thoroughbred Dictionary-IV as a default for menus, or you may create your
own.

Data element requirements and options

At least two attributes must be defined for each data element in a file:

• Data Element Name

• Data Element Length (determines the element to be single or multiple occurrence and a string,
integer, or decimal)

The following optional information can be specified for a data element:

• Whether the data element is a key (used for sorting and accessing data in the file).

• Numeric type.

• Multiple occurrences of a data element for defining repeating data fields.

• Whether a field separator will follow the data element.

• Predefined data types (text field, yes/no, date, telephone number, Social Security number, etc.).

• Assistance for the entry and editing of data (message, help, valid and defaults, optional or mandatory
entry, justification, security for access or display).

• Processing controls (pre-/post-entry processing, deletion testing, auditing changes).

• Cross-indexing, or sorting, that is not defined in the format.

• A maintainable list of defined data elements, the global dictionary, is also available to aid in data
element definition.

77
Copyright  2014 Thoroughbred Software International, Inc.

Format naming conventions

A format name consists of a # (pound sign) and from three to eight characters for the name. A format
name cannot contain spaces or any of the following characters:

= an equal sign
. a period
; a semicolon
, a comma
$ a dollar sign
& an ampersand

Examples

The following examples are valid format names:

#DNF
#DNFFMT
#DNFORMAT

Format names can be specified literally as in the previous example or they can be specified from within a
Thoroughbred Basic variable as in the following examples:

Examples

A$ = "#DNF"
B$ = "#DNFFMT"
C$ = "#DNFORMAT"

The formats specified in A$, B$, and C$ can be used as literal format references in FORMAT directives
and the EXTRACT, READ, and WRITE directives by preceding the Thoroughbred Basic variable name
with # (pound sign).

Examples

FORMAT INCLUDE #A$, OPT="DEFAULT"
FORMAT DELETE #B$
READ (C,KEY=K$) #C$
WRITE (C,KEY=K$) #C$

To reference data within formats specified within a variable, you must use the FMD directive or function,
and, starting with release 8.3.0, the FMT directive and function. Literal data name references cannot be
made.

A data name consists of a format name plus a . (period) and from one to 20 characters for the name. When
a data name is defined to have multiple occurrences, the occurrence value follows the data name and is
enclosed within parentheses.

78
Copyright  2014 Thoroughbred Software International, Inc.

Examples

#DNFFMT.D
#DNFFMT.DATA_NAME
#DNFFMT.WEEKLY-TOT(4)
#DNFFMT.DATA-ELEMENT-NUMBER1
#DNFFMT.AR_MONTHLY_TOTAL_BAL(12)

Assignment rules

The most important assignment rule when using data names is that the receiving field dictates the type of
data to be received.

An alphanumeric data name may receive a value from a string variable, a numeric variable, a string
constant, a numeric constant, or another data name. When storing a numeric value in an alphanumeric
data name, the numeric value is converted to a string.

Examples

LET #DNFFMT.STRING=S$
LET #DNFFMT.STRING=S
LET #DNFFMT.STRING="STRING VALUE 1"
LET #DNFFMT.STRING=100
LET #DNFFMT.STRING=#DNFFMT.STRING-2
LET #DNFFMT.STRING=#DNFFMT.NUMBERS

The value of an alphanumeric data name may be returned to that of a string variable, a numeric variable,
or another data name. When a value is to be stored as a numeric variable or data name, it is converted to a
numeric value. If the alphanumeric value does not contain a numeric value, the result is an ERR=26 for
Thoroughbred Basic variables, or an ERR=166 for data names.

Examples

LET S$=#DNFFMT.STRING
LET S$=#DNFFMT.STRING
LET #DNFFMT.STRING-2=#DNFFMT.STRING
LET #DNFFMT.NUMBER = #DNFFMT.STRING

A numeric data name may receive a value from a numeric variable, a string variable containing a numeric
value, a numeric constant, a string constant containing a numeric value, or another data name. When
storing an alphanumeric (string) value in a numeric data name, the alphanumeric value is converted to a
numeric value. If the alphanumeric value does not contain a numeric value, the result is an ERR=166.

79
Copyright  2014 Thoroughbred Software International, Inc.

Examples

LET #DNFFMT.NUMBER=S
LET #DNFFMT.NUMBER=100
LET #DNFFMT.NUMBER=#DNFFMT.NUMBER-2
LET #DNFFMT.NUMBER=S$
LET #DNFFMT.NUMBER="100"
LET #DNFFMT.NUMBER=#DNFFMT.STRING

The value of a numeric data name may be returned to that of a string variable or another data name. When
a numeric value is to be stored in a string variable or alphanumeric data name, it is converted to a string.

Examples

LET S=#DNFFMT.NUMBER
LET S$=#DNFFMT.NUMBER
LET #DNFFMT.NUMBER-2=#DNFFMT.NUMBER
LET #DNFFMT.STRING=#DNFFMT.NUMBER

A format may receive a value from a string variable or string constant and then return its value to that of a
string variable.

Examples

LET #DNFFMT=F$
LET #DNFFMT="010010ABC Sales Company 0012345.56"
LET F$=#DNFFMT

A special case exists when assigning one or more formats to another format:

LET #format1 = #format2 [[& #format3] . . .][& #formatn]]

Only the values of matching data element names are copied into the receiving format. In the case of
multiple format assignments, the value of the last format with a matching data element name is copied
into the receiving format. In other words, the following multiple format assignment:

LET #FORMAT1 = #FORMAT2 & #FORMAT3 & #FORMAT4

produces the same results as the following combination of single format assignments:

LET #FORMAT1 = #FORMAT2, #FORMAT1 = #FORMAT3, #FORMAT1 = #FORMAT4

80
Copyright  2014 Thoroughbred Software International, Inc.

Examples

Consider two format definitions, #DNFFMT and #DNFFMT2:

#DNFFMT data names: #DNFFMT2 data names:

NAME NAME
ST-ADDR1 STATE
ST-ADDR2 ZIP
CITY AMOUNT
STATE
ZIP

Consider the following format assignment statement:

LET #DNFFMT=#DNFFMT2

The values of NAME, STATE, and ZIP from #DNFFMT2 will be stored in #DNFFMT.

Now, consider four format definitions:

#DNFFMT data names: #DNFFMT1 data names:

NAME NAME
ST-ADDR1 ADDR1
ST-ADDR2 ADDR2
CITY CITY
STATE STATE
ZIP ZIP
SSN AMOUNT
HM-PHONE WK-PHONE

#DNFFMT2 data names: #DNFFMT3 data names:

NAME NAME
SOC-SEC-NO HM-PHONE
STREET-ADDR1
STREET-ADDR2
CITY
STATE
ZIP-CODE

Consider the following format assignment statement:

LET #DNFFMT=#DNFFMT1 & #DNFFMT2 & #DNFFMT3

The values of ZIP from #DNFFMT1, CITY and STATE from #DNFFMT2, and NAME and
HM-PHONE from #DNFFMT3 will be stored in #DNFFMT.

A variable format may receive a value from a string variable or string constant and then return its value to
that of a string variable.

81
Copyright  2014 Thoroughbred Software International, Inc.

Examples

LET FMT$=”#DNFFMT”
LET #FMT$=F$
LET #FMT$="010010ABC Sales Company 0012345.56"
LET F$=#FMT$

The special case exists when assigning one or more variable formats to another variable format:

LET #str-var1 = #str-var2 [[& #str-var3] . . .][& #str-varn]]

Only the values of matching data element names are copied into the receiving variable format. In the case
of multiple variable format assignments, the value of the last variable format with a matching data
element name is copied into the receiving variable format. In other words, the following multiple variable
format assignment:

LET #FMT1$ = # FMT2$ & # FMT3$ & # FMT4$

where:

LET FMT1$=”#FORMAT1”
LET FMT2$=”#FORMAT2”
LET FMT3$=”#FORMAT3”
LET FMT4$=”#FORMAT4”

produces the same results as the following combination of single format assignments:

LET #FMT1$ = #FMT2$, #FMT1$ = #FMT3$, #FMT1$ = #FMT4$

Programming with format and data names

The following list contains some helpful hints when programming with formats and data names:

• To reference a data name in a program, the data name's format must be literally INCLUDEd by the
program.

• A new program that contains format and data name references must be compiled or SAVEd before it
can be RUN. If any unresolved format or data name references exist in the program, they will be
reported in the ERRBUF system variable. All errors must be corrected before you RUN the program.

• If a statement containing data name references is added or a statement containing data names is
modified, the program must be re-compiled, i.e., re-SAVEd, before it is RUN.

• Like SAVE, the FIXUP directive compiles format and data name references. This directive can be
used to re-compile programs with modified format and data name definitions.

• The CPP function compiles format and data name references, as long as the data name's format is
INCLUDEd. This function can be used to generate code containing format and data name references
to be executed by a public program.

82
Copyright  2014 Thoroughbred Software International, Inc.

• The compile process implemented by the SAVE and FIXUP directives only INCLUDEs a format
defined in a program if it does not already exist in memory (i.e., it is not already INCLUDEd).
However, if a format exists in memory and has been modified since it was INCLUDEd, the format is
shuffled. In other words, it is re-INCLUDEd while preserving the format's data area.

• Format data-name calculations perform rounding based on the definition of the data element. This
feature is available starting with Thoroughbred Basic 8.3.1.

For more information

Directives, functions and system variables associated with formats and data names are:

Directives: FIXUP
FORMAT DEFAULT
FORMAT DELETE
FORMAT INCLUDE
FORMAT INIT
LET FMD
LET FMT
SAVE

Functions: ATR
CPP
FMD
FMT

System Variables: DNE
ERRBUF
FMTNL

For more information on these directives, functions, and system variables, please refer to the descriptions
in the Thoroughbred Basic Language Reference. For more information on formats and data names please
refer to the Thoroughbred Dictionary-IV Reference Manual.

83
Copyright  2014 Thoroughbred Software International, Inc.

3GL Trigger

When data is being written to or read from Thoroughbred files, the 3GL Trigger allows you to modify
that data transparent to the running application. Data can be normalized and file integrity can be
maintained, without changing your current 3GL code.

When an I/O operation is performed and the data file is contained in a trigger list, that I/O is intercepted
and passed to the trigger code before being returned to the application or being written to the disk.

The LOAD directive activates the given Trigger Method. The DROP directive can then deactivate the
given Trigger Method.

Syntax

LOAD trigger-definition-list, OPT="IOT"
DROP trigger-definition-list, OPT="IOT"

Where:

trigger-definition-list is the trigger file list to activate or deactivate.

OPT="IOT" is the keyword that indicates to Basic that this is a Trigger Definition List.

This causes a lookup in OOLIOT0 to match the trigger-definition-list. On each entry in the data-
file-list for that trigger-definition-list is a Data-File/Trigger-Method pair.

Besides LOAD, you can also activate a trigger using the IPLINPUT file.

PRM LOADTRIGGER=trigger-definition-list

Setting Up the Trigger

To set up the trigger, you must first create a trigger definition list, and then create a data file list for that
definition.

Trigger Definition

Below is the Format of the Trigger Definition List Files.

Name: OOFIOT1 , Trigger Definition List Files
 Fld Key --- Position ----
 Data Element Length Sep HELP Ind
1 TRIGGER-DEF-NAME.... 8 - TNAME Y

The name of this trigger definition list. This is the name which ties back to the trigger definition
list header and is used in the LOAD "trigger-definition-list", OPT="IOT" and DROP " trigger-
definition-list", OPT="IOT".

2 TRIGGER-DESC........ 40 - TDESC

84
Copyright  2014 Thoroughbred Software International, Inc.

Provides a descriptive definition for this trigger definition list.

3 CREATED-DATE........ 11.4 - TCDATE

The date on which this trigger definition list was created is automatically created.

Perform screen maintenance on OOLIOT1 and define the trigger-definition-list using normal
Thoroughbred procedure (2-character library name and up to 6 characters for the file name).

You then can use up to 40 characters to describe your trigger definition.

Example

07/03/03 Trigger Definition List Files 1

Trigger
Def Name Description Created Date/Time
HRTALL All Files 05/12/03 13:19:29
HRTUSERS Users Triggers 06/20/03 13:24:58

Trigger Method

Once you have created your Trigger Definition List you then must set up the data file list to be accessed
by the Trigger Method during I/O to the data file.

Below is the format of the data file list.

Name: OOFIOT0 , I/O Trigger CONNECT spec
 Fld Key
 Data Element Length Sep HELP Ind
===
 1 TRIGGER-DEF-NAME.... 8 - TNAME Y

The name of this trigger definition list. This is the name which ties back to the trigger definition
list header and is used in the LOAD " trigger-definition-list ", OPT="IOT" and DROP " trigger-
definition-list", OPT="IOT".

 2 DATA-FILE-NAME...... 14 - TFILE Y

The name of each Data file to be included in this trigger definition list.

 3 LINK-NAME........... 8 - TLINK -

Dictionary-IV Link Name that defines the FORMAT and any SORTS, which may exist for this
file.

 4 FORMAT-NAME......... 8 - TFMT -

The Dictionary-IV Format Name that defines the data for the records in this file.

 5 APPLICATION-TRIGGER. 8 - TTRIG -

The Basic method that will be invoked by OOIO on any I/O to the data file.

 6 IO-OPTION........... 1 - TIOOPT -

85
Copyright  2014 Thoroughbred Software International, Inc.

Reserved for future use.

Example:

07/03/03 Data File List 1
Trigger Data Link Format Applic I/O
Def Name File Name Name Name Trigger Option
HRTALL ACCCHG HRL0123 HRF0123 HRTFTRIG N
HRTALL ACCDEL HRL0124 HRF0124 HRTFTRIG N
HRTALL ACCTA HRL0122 HRF0122 HRTFTRIG N
HRTALL ACFILE HRL0313 HRF0313 HRTFTRIG N

OOIO

When an I/O directive to a file is executed and that file is contained in a trigger, Basic activates the
"OOIO" method. Basic provides all information necessary for "OOIO" to determine which trigger method
should be executed for the I/O action. This information is passed from Basic to OOIO in OOIO$[0]
through OOIO$[7]. The record data passed into the trigger in entry OOIO$[5] is raw data. OOIO$[5] will
have field separators and lengths just as if the record had been read into a string with the READ
RECORD() directive. The data passed back to Basic in OOIO$[7] must have the delimiters in place so
that the variable list for the READ directive can be filled. Please refer to the DTR() and RTD() functions
in the Basic Language Reference for information on processing data in this format.

If an error condition occurs in OOIO, error processing can be controlled by setting the following variables
prior to exiting:

OOIO$[0]: "X" or "ERROR nnn".

 When OOIO$[0] is set to "X" Basic assumes the trigger has done
whatever is needed to complete the I/O directive. The interrupted
program will continue at the next statement.

 When OOIO$[0] is set to "ERROR nnn" the interrupted program will
receive an ERR=nnn.

CGV(“OOIO_ERROR”): The Common Global Variable "OOIO_ERROR" can be used to pass
back additional message text or a CONNECT METHOD or RETURN
directive including parameter values.

If OOIO is invoked from UPDATE, CONNECT SCREEN or CONNECT VIEW and OOIO$[0] is set to
"ERROR 99", the CONNECT METHOD or RETURN directive defined in "OOIO_ERROR" will be
processed prior to returning control back to your application. If "OOIO_ERROR" is not set, normal error
processing will be executed based on the value of ERR. In the case of the UPDATE directive, standard
UPDATE ERROR PROCESSING IS procedure_name is always executed based on the value of ERR
when control is returned to the Script.

86
Copyright  2014 Thoroughbred Software International, Inc.

The following example assumes an OPENworkshop environment. When OOIO exits, ERR will be set to
99 and the Method named TRIGERROR will be executed. The parameter "OutOfStock" is passed to the
Method TRIGERROR.

LET O$=CGV("OOIO_ERROR","CONNECT METHOD TRIGERROR, OutOfStock");
LET OOIO$[0]="ERROR 99";
EXIT

The following example assumes an OPENworkshop environment. When OOIO exits, ERR will be set to
99 and the Dictionary-IV Help definition named HELP01 will be displayed.

LET O$=CGV("OOIO_ERROR","ERROR HELP01; EXIT");
LET OOIO$[0]="ERROR 99";
EXIT

The following example assumes a 3GL environment. When OOIO exits, ERR will be set to 90 and
"OOIO_ERROR" will contain the message text "OutOfStock". The application code can then test for the
case where ERR=90 and process the appropriate error logic.

LET O$=CGV("OOIO_ERROR","OutOfStock");
LET OOIO$[0]="ERROR 9O";
EXIT

Important: An example OOIO trigger is supplied in the Thoroughbred OO0 source library. The OO0
Source-IV library is a Thoroughbred library, it will be replaced if an upgrade is done. Never maintain
your triggers in the OO0 library. To use OO0.OOIO as a template for your triggers you must first copy it
to one of your application Source-IV libraries.

87
Copyright  2014 Thoroughbred Software International, Inc.

OOIO Example

METHOD OOIO$[ALL], OOIO[ALL]

OOIO$

 [0] - Return values for basic.
 [1](1,1) - Basic directive code.
 (2,2) - Channel number for I/O operation.
 (4,14)- Basic file name associated with the channel.
 (18,1)- 02 = IND= was specified
 01 = KEY= was specified
 00 = neither IND= or KEY= were specified.
 (19,1)- 01 = DOM= was specified on a WRITE.
 (20,1)- 01 = a record was not found for a READ.
 [2] - Basic file name table created by Load(s). Comes from file
 OOIOT0 and is defined by the link OOLIOT0 and the format
 OOFIOT0. This table is created and maintained by basic as
 LOAD trigger-class,OPT="IOT" and
 DROP trigger-class,OPT="IOT" directives are done.
 1,14 - Basic File name.
 15,8 - Dict Link name.
 23,8 - Dict Format name.
 31,8 - Basic File Trigger name.
 39,1 - I/O Type: R-Read W-Write B-Both
 40,x - etc.
 [3] - Channel number + Basic file name table entry address table.
 This table is maintained as basic files are opened closed.
 1,2 - Channel number.
 3,2 - Entry address within Basic File name table.
 [4] - Old record key when write.
 Current record key when read.
 [5] - Old record data when write is being done.
 Current record data when read.
 [6] - New record key when write.
 [7] - New record data when write.
 [8-N] These can be used by the trigger developer to maintain information
 needed by subsequent invocations, or to retain information to
 optimize access.

OOIO[ALL] Currently not used.

88
Copyright  2014 Thoroughbred Software International, Inc.

PROCEDURE
 FUNC$= OOIO$[1], ! Set: basic function.
 DIRF$= FUNC$(1,1), ! dir/func code.
 CHN$ = FUNC$(2,2), ! channel number (str) .
 CHN = DEC(CHN$), ! channel number (num) .
 FILE$= FUNC$(4,14), ! dir/func file name.
 W$ = OOIO$[3], ! channel/file table.
 W = POS(CHN$=W$,4); ! Find channel in file table.
 IF W=0 ! If channel not opened
 EXIT ! Get out.
 FI; ! endif
 I = DEC(00+W$(W+2,2)), ! Set: trigger table entry adr
 TE$ = OOIO$[2](I,39); ! trigger info entry.
 DF$ = TE$(1,14), ! data file name.
 LNK$ = TE$(15,8), ! link name.
 FMT$ = TE$(23,8), ! format name.
 FMI$ = "#"+FMT$, ! (usable form)
 TRG$ = TE$(31,8), ! trigger name.
 IOT$ = TE$(39,1), ! I/O type.
 OOIO$[0]=""; ! Clear return value.
 CALL TRG$,OOIO$[ALL],OOIO[ALL],DIRF$, ! Go process
 FILE$,DF$,LNK$,FMT$,IOT$,CHN$,CHN;! I/O
 IF OOIO$[0]="" ! If no return code
 OOIO$[0]="." ! Set ok return.
 FI; ! endif
 EXIT ! Get out

89
Copyright  2014 Thoroughbred Software International, Inc.

Example Trigger Method

METHOD IOT$[ALL],IOT[ALL],DIRF$,FILE$,DF$,LNK$,FMT$,IOT$,CHN$,CHN

 IOT$
 [0] - Return values for basic.
 [1](1,1) - Basic directive code.
 (2,2) - Channel number for I/O operation.
 (4,14)- Basic file name associated with the channel.
 (18,1)- 02 = IND= was specified
 01 = KEY= was specified
 00 = neither IND= or KEY= were specified.
 (19,1)- 01 = DOM= was specified on a WRITE.
 (20,1)- 01 = a record was not found for a READ.
 [2] - Basic file name table created by Load(s). Comes from file
 OOIOT0 and is defined by the link OOLIOT0 and the format
 OOFIOT0. This table is created and maintained by basic as
 LOAD trigger-class,OPT="IOT" and
 DROP trigger-class,OPT="IOT" directives are done.
 1,14 - Basic File name.
 15,8 - Dict Link name.
 23,8 - Dict Format name.
 31,8 - Basic File Trigger name.
 39,1 - I/O Type: R-Read W-Write B-Both
 40,x - etc.
 [3] - Channel number + Basic file name table entry address table.
 This table is maintained as basic files are opened closed.
 1,2 - Channel number.
 3,2 - Entry address within Basic File name table.
 [4] - Old record key when write.
 Current record key when read.
 [5] - Old record data when write is being done.
 Current record data when read.
 [6] - New record key when write.
 [7] - New record data when write.
 [8-N] These can be used by the trigger developer to maintain information
 needed by subsequent invocations, or to retain information to
 optimize access.

 IOT[ALL] Currently not used.
 DIRF$ = One byte directive/function code.
 (Corresponds to the Basic Atom for that Directive)
 FILE$ = File name.
 LNK$ = Link name.
 FMT$ = Format name.
 IOT$ = IO Trigger type.
 CHN$ = Two byte binary channel number.
 CHN = Numeric channel number.

PROCEDURE
 IOTT$= 20+ ! OPEN.
 21+ ! CLOSE.
 25+ ! PRINT.
 26+ ! WRITE.

90
Copyright  2014 Thoroughbred Software International, Inc.

 27+ ! REMOVE
 29+ ! INPUT.
 $2A$+ ! READ.
 $2B$+ ! EXTRACT.
 $2C$+ ! FIND.
 $4A$+ ! INPUT RECORD.
 $4B$+ ! READ RECORD.
 $4C$+ ! EXTRACT RECORD.
 $4D$+ ! FIND RECORD.
 $4E$+ ! PRINT RECORD.
 $4F$+ ! WRITE RECORD.
 54+ ! READ PREVIOUS.
 55+ ! READ PREVIOUS RECORD.
 56+ ! EXTRACT PREVIOUS.
 57; ! EXTRACT PREVIOUS RECORD.

 ON POS(DIRF$=IOTT$) GOSUB ! Go process I/O directive.
 BADDIR, ! Bad directive/function.
 XOPEN, ! OPEN.
 XCLOSE, ! CLOSE.
 XPRINT, ! PRINT.
 XWRITE, ! WRITE.
 XREMOVE, ! REMOVE
 XINPUT, ! INPUT.
 XREAD, ! READ.
 XEXTRACT, ! EXTRACT.
 XFIND, ! FIND.
 XINPUTRECORD, ! INPUTRECORD.
 XREADRECORD, ! READRECORD.
 XEXTRACTRECORD, ! EXTRACTRECORD.
 XFINDRECORD, ! FINDRECORD.
 XPRINTRECORD, ! PRINTRECORD.
 XWRITERECORD, ! WRITERECORD.
 XREADPREV, ! READPREV.
 XREADPREVRECORD, ! READPREVRECORD.
 XEXTRACTPREV, ! EXTRACTPREV.
 XEXTRACTPREVRECORD, ! EXTRACTPREVRECORD.
 BADDIR; ! Bad directive/function.
 EXIT

BADDIR ! PROCESS BAD DIRECTIVE.
 PRINT "Bad Directive: $"+HTA(DIRF$),"$",; ! Show status.
 INPUT *; ! Wait for input.
 RETURN ! Return.

XOPEN
! Processing
 RETURN

XCLOSE
! Processing
 RETURN

91
Copyright  2014 Thoroughbred Software International, Inc.

XPRINT
! Processing
 RETURN

XWRITE
! Processing
 RETURN

XREMOVE
! Processing
 RETURN

XINPUT
! Processing
 RETURN

XREAD
! Processing
 RETURN

XEXTRACT
 GOSUB XREAD;
 RETURN

XFIND
 GOSUB XREAD;
 RETURN

XINPUTRECORD
! Processing
 RETURN

XREADRECORD
 GOSUB XREAD;
 RETURN

XEXTRACTRECORD
 GOSUB XREAD;
 RETURN

XFINDRECORD
 GOSUB XREAD;
 RETURN

XPRINTRECORD
! Processing
 RETURN

XWRITERECORD
 GOSUB XWRITE;
 RETURN

XREADPREV
 GOSUB XREAD;
 RETURN

92
Copyright  2014 Thoroughbred Software International, Inc.

XREADPREVRECORD
 GOSUB XREAD;
 RETURN

XEXTRACTPREV
 GOSUB XREAD;
 RETURN

XEXTRACTPREVRECORD
 GOSUB XREAD;
 RETURN

7. Thoroughbred Basic Language Overview

This chapter is divided into two parts:

• A discussion of syntax conventions used to describe Thoroughbred Basic directives, functions, and
system variables.

• A quick reference to all Thoroughbred Basic directives, functions, and system variables. The quick
reference is divided into the following categories:

Directives
Numeric functions
String functions
System variables

Entries under each category are alphabetically ordered. Each entry contains the required syntax for the
directive, function, or system variable.

Full descriptions of directives, functions, and system variables are contained in the Thoroughbred Basic
Language Reference. Most descriptions contain the following information:

PURPOSE discusses how to use the directive, function, or system variable.

SYNTAX displays how to type the directive, function, or system variable.

REMARKS discusses things to remember and the most common errors encountered during execution.

EXAMPLES illustrates how to use the directive, function, or system variable.

SEE ALSO directs you to related or similar directives, functions, and system variables.

Some directives, functions, and system variables differ within operating system environments (e.g., UNIX
versus MS-DOS), and from one release level to another of Thoroughbred Basic. Where possible, these
differences are addressed in the REMARKS section for the directive, function, or system variable. Where
the differences are too significant to simply list (e.g., DSD function) there are separate entries for the
different items, noting which release level or environment is applicable.

93
Copyright  2014 Thoroughbred Software International, Inc.

Syntax conventions

Descriptions of Thoroughbred Basic directives, functions, and variables follow the syntax conventions
described below:

CAPITALS Words in capital letters are keywords and must be entered as shown. Thoroughbred Basic
is case sensitive. This means that lowercase letters are not the same as uppercase letters.
Keywords are shown in uppercase letters and must be typed in uppercase letters.

lowercase All items shown in lowercase must be supplied by you.

[Optional] Items in small, square brackets ([]) indicate optional entries. You do not have to type the
item enclosed by the brackets and you do not type the brackets.

[Required] Large, square brackets are required syntax elements. You must type them. Under some
circumstances, such as when you define string arrays, Thoroughbred Basic requires you
to type these brackets.

Punctuation With the exception of . . . (ellipsis), Thoroughbred Basic requires you to type the
punctuation displayed in the syntax of directives, functions, and variables. This includes
commas, semicolons, colons, and parentheses. An ellipsis indicates that an item can be
repeated many times.

Example:

INPUT [(channel [, i/o-options])][DIM arrayname$ [element1 [, element2 [, element3]][
[(length [, initialization-value])]

In the example above, the brackets ([]) around the elements are required syntax components: to specify
at least one element you must use the brackets to enclose the specification. The other brackets ([])
enclose optional parameters: you do not have to specify values for those parameters; if you specify values
for those parameters you do not type brackets around the specifications.

Many of the parameters in the syntax definitions in the following section accept a string variable or string
constant specification. For example, you can specify file-name or program-name with a variable that
contains the name of a file or program, or type in the name of a file or program. All constants must be
enclosed by quotes. As an example, you can type "textfile.txt" to specify a string constant for the
file-name parameter.

94
Copyright  2014 Thoroughbred Software International, Inc.

Quick reference

The following is a list of all Thoroughbred Basic directives, functions, and system variables.

Directives

ADD file-name
[,ERR=line-ref|,ERC=numeric-value]

Finds a file and adds its location information
to the file control table.

ADDR program-name
[,ERR=line-ref|,ERC=numeric-value]
[,BNK=bank-num]

Finds a public program, adds its location
information to the file control table, and loads
it into memory, keeping it resident as much as
possible.

ADDSORT file-name, [sort-name1:] sortdef1
[:mode1] [,[sort-name2:] sortdef2 [:mode2]
[, ... [sort-namen:] sortdefn [:moden]]] ,
disk-num,
[,ERR=line-ref|,ERC=numeric-value]

Defines a new sort sequence for an MSORT or
TISAM file.

API(library$, function$ [, argument-1, . . .,
argument-n])

Enables a Thoroughbred Basic program to call
functions from the Microsoft Windows
application-programming interface (API).

BEGIN [,EXCEPT variable-name
[,variable-name...]]

Initializes program parameters and
environment.

CALL program-name
[,ERR=line-ref|,ERC=numeric-value]
[,value-list]

Executes a public program, passing and
receiving data specified in value-list.

CLEAR [,EXCEPT variable-name
[,variable-name...]]

Clears certain program parameters and
variables.

CLEAR ERC Resets the ERC system variable to 0, its initial
value.

CLOSE (channel
[,ERR=line-ref|,ERC=numeric-value])

Terminates operation of the designated I/O
channel.

COMMIT
[,ERR=line-ref|,ERC=numeric-value]

Terminates the TRANSACTION BEGIN
directive.

DEF FNx [$] (variable-list) = string/numeric-
expression

Allows the programmer to define string or
numeric functions.

DELETE [line-ref1 [,line-ref2]] Removes statements from a program.

DELETE ARRAY array-name [(pos1,count1)
[,(pos2,count2)[,(pos3,count3)]]]

Deletes elements of an array.

DIM array-name (dim1 [,dim2 [,dim3]])
[,array-name (dim1 [,dim2 [,dim3]])...]

Defines a numeric array of up to 3 dimensions.

95
Copyright  2014 Thoroughbred Software International, Inc.

DIM array-name [elem1 [,elem2 [,elem3]]]
[(length [,init-value])] . . .

Defines a string array of up to 3 dimensions.

DIM variable-name (length [,init-value])
[,variable-name (length [,init-value])...]

Defines a string variable of a specific length.

DIRECT file-name, key-size, num-records,
record-size, disk-num, sector-num
[,ERR=line-ref|,ERC=numeric-value]

Defines a single-key, keyed-access file on disk
with the sizes given.

DISABLE disk-num [,LOCAL]
[,ERR=line-ref|,ERC=numeric-value]

Prohibits access to a logical disk directory and
its files.

DROP file-name
[,ERR=line-ref|,ERC=numeric-value]
 or
DROP ALL
[,ERR=line-ref|,ERC=numeric-value]

Removes a file-name or all file-names from
the file control table that were placed there
with an ADD or ADDR directive, and releases
the memory allocated to public programs that
were ADDRed.

DUMP keyword (channel
[,ERR=line-ref|,ERC=numeric-value]
dump-options)

Debugs and prints on the selected channel the
specified information about this task.

EDIT Full screen program editor.

EDIT line-ref edit-specifier [string-constant] Program line editor.

' [line-num] EDIT recall directive. Retrieves the last
command for editing and execution.

EDITF Invokes the Thoroughbred Basic formatted
program editor.

ENABLE disk-ident [,LOCAL]
[,ERR=line-ref|,ERC=numeric-value]

Enables access to a previously DISABLEd
logical disk directory and its files.

ENCRYPT program-name1, program-name2
[,PWD=passwd]
[,ERR=line-ref|,ERC=numeric-value]

Encrypts a program to prevent LISTing
beyond line 00100.

END Terminates program operation.

ENDTRACE Terminates program trace operations started
with SETTRACE.

ENTER [variable-list] Marks the point where a public program
receives its passed data from the CALLing
program.

ERASE file-name
[,ERR=line-ref|,ERC=numeric-value]

Removes a file from a logical disk directory
and releases its disk storage space.

ESCAPE Interrupts and suspends program execution.

ESCAPE WHEN condition Causes an escape from the program when a
specified condition is met.

96
Copyright  2014 Thoroughbred Software International, Inc.

ESCOFF Disables program escape trapping specified by
the SETESC directive.

ESCON Enables program escape trapping specified by
the SETESC directive and reverses the effects
of the ESCOFF directive.

EXECUTE string-value Dynamically builds Thoroughbred Basic code
during program execution.

EXIT [error-value] Returns from a public program to the
CALLing program.

EXITTO line-ref Terminates a loop or subroutine and branches
to the specified line-ref.

[P]EXTRACT (channel [,I/O-opts])
[variable-list] [,IOL=line-ref]

Reads the next data record and prohibits access
by anyone else to that data record.

[P]EXTRACT RECORD (channel
[,I/O-opts]) string-variable

Same as above except that the RECORD
modifier allows the entire record, including
any field separator characters, to be entered as
data into a single string variable.

FILE string-value Defines a file from a formatted FID or XFD
string-value

FIND (channel [,I/O-opts]) [variable-list]
[,IOL=line-ref]

FINDs (and READs, if found) a data record
from a file into a string of variables or single
variable.

FIND RECORD (channel [,I/O-opts])
string-variable

Same as FIND except that the RECORD
modifier allows the entire record, including
any field separator characters, to be entered as
data into a single string variable.

FINPUT (channel, ATR=attribs [,EDT=edit
modes] [,TIM= seconds]
[,ERR=line-ref|,ERC=numeric-value])
variable-name

INPUTs data from a one-row Thoroughbred
Basic Window on a terminal; data may be
longer than length of window.

FIXUP program-name
[,ERR=line-ref|,ERC=numeric-value]

Fixes information in the program file structure
of a program on disk.

FLOATING POINT Sets arithmetic operation environment to
scientific notation as opposed to fixed point
PRECISION.

FOR numeric-variable = numeric-value1 TO
numeric-value2 [STEP numeric-value3]
NEXT numeric variable

Initiates a FOR/NEXT loop incrementing
numeric-value from value1 to value2 by
value3 amount.

97
Copyright  2014 Thoroughbred Software International, Inc.

FORMAT DEFAULT format-name
[,OPT="DFONLY"]
[,ERR=line-ref|,ERC=numeric-value]
 or
FORMAT DEFAULT ALL
[,OPT="DFONLY"]
[,ERR=line-ref|,ERC=numeric-value]

Initializes the value of all data elements and
loads any defaults for a selected format or for
all formats that have been INCLUDEd.

FORMAT DELETE format-name
[,ERR=line-ref|,ERC=numeric-value]
 or
FORMAT DELETE ALL
[,ERR=line-ref|,ERC=numeric-value]

Removes a selected format or all formats and it
releases the memory allocated to the format(s)
INCLUDEd.

FORMAT INCLUDE format-name
[,OPT=init-type]
[,ERR=line-ref|,ERC=numeric-value]

Loads the format attributes from the data
dictionary into memory, and then initializes
the format's data area.

FORMAT INIT format-name
[,ERR=line-ref|,ERC=numeric-value]
 or
FORMAT INIT ALL
[,ERR=line-ref|,ERC=numeric-value]

Initializes the data elements of the specified
format or all formats INCLUDEd by the
current program.

GET disk-num, sector-num
[,ERR=line-ref|,ERC=numeric-value],
string-variable

Reads data from disk-num, starting at
sector-num, into string-variable for the length
of string-variable (MS-DOS only).

GOSUB line-ref Branches to line-ref and sets up a RETURN
pointer to the next statement after the
GOSUB.

GOTO line-ref Branches, unconditionally, to line-ref.

IF condition [THEN] stmt [ELSE stmt] [FI] Test for condition and, IF true follows the
THEN stmt, but, if false, follows the ELSE
stmt; terminating the statement at FI.

INDEXED file-name, num-records,
record-size,disk-num, sector-num
[,ERR=line-ref|,ERC=numeric-value]

Defines a sequential file on disk with the sizes
given.

INITFILE file-name
[,ERR=line-ref|,ERC=numeric-value]

Clears existing file-name of its contents but
retains the file allocation.

INPUT [EDT] [(channel [,I/O-opts])]
[@(column [,row])] [,mnemonic
[,mnemonic...]] [,output] [,variable-list
[:verification]] [,IOL=line-ref]

Accepts data from terminal or file, with several
options, terminated by pressing Enter or F4.

INPUT [EDT] RECORD [channel
[,I/O-opts])] string-variable

Same as above except that the RECORD
modifier allows the entire record, including
any delimiting characters, to be entered as data
into a single string variable.

98
Copyright  2014 Thoroughbred Software International, Inc.

INSERT ARRAY array-name [(pos1,count1)
[,(pos2,count2)[,(pos3,count3)]]]

Inserts elements of an array.

IOLIST [@(col [,row])] [,mnemonic
[,mnemonic...]] [,output] [,variable-list
[:verification]] [,variable-list [:masking]]
[,IOL=line-ref]

Defines a list of variable names for input or
output along with cursor positioning,
prompting, and data verification or masking.

[LET] variable-name = value Assigns a value to a variable-name.

LET FMD (string-value [,element-number
[,occurrence-number]])=data$
[,ERR=line-ref|,ERC=numeric-value]

Stores a string's value into the data area of a
format currently in memory.

LET FMT (str-val [,elem-num [,occ-num]]) =
data-val [,ERR=line-ref|,ERC=numeric-value]

Assigns the value of a string to a data name.

LIST [(channel
[,ERR=line-ref|,ERC=numeric-value]
[,IND=index-num] [,TBL=line-ref])]
[line-ref1] [,line-ref2]

Outputs program statements in their
fully-expanded, interpretive format.

LOAD program-name [,PWD=password] Transfers a program from storage media into
memory in preparation for RUNning or
LISTing.

LOCK (channel
[,ERR=line-ref|,ERC=numeric-value])

Prevents access to an OPEN file by any other
task until UNLOCKed or CLOSEd.

LOG CLOSE
[,ERR=line-ref|,ERC=numeric-value]

Closes the transaction log file system.

LOG OPEN filename, option
[,ERR=line-ref|,ERC=numeric-value]

Initializes the transaction log file system.

LONGVAR Sets syntax processing to long variable name
environment.

MERGE (channel
[,ERR=line-ref|,ERC=numeric-value]
[,IND=index-num] [TBL=line-ref])

Combines program statements from an
INDEXED file with task program memory.

MSORT file-name, [sort-name1:] sortdef1 [
:mode1] [, [sort-name2:] sortdef2 [:mode2]
[, ... [sort-namen:] sortdefn [:moden]]] ,
num-records, record-size, disk-num,
sector-num
[,ERR=line-ref|,ERC=numeric-value]

Defines a multiple-keyed, keyed access file on
disk with the sizes and keys given.

ON numeric-value GOSUB line-ref0
[,line-ref1 [,line-ref2...line-ref-n]]

Branches to one of a list of line-refs depending
ON the value of numeric-value and sets up a
RETURN pointer to the next statement after
the GOSUB.

99
Copyright  2014 Thoroughbred Software International, Inc.

ON numeric-value GOTO line-ref0 [,line-ref1
[,line-ref2...line-ref-n]]

Branches, unconditionally, to one of a list of
line-refs depending on the value of
numeric-value.

OPEN (channel
[,ERR=line-ref|,ERC=numeric-value]
[,OPT=file-type] [,ISZ=record-size]
[,SEP=field-sep]) file-name

Assigns a file or device to an input/output
channel and makes it available for
communication or data transfer.

PACK ARRAY array-name [ALL] ,str-var
[,pack-oper]
[,ERR=line-ref|,ERC=numeric-value]

Builds a string from the contents of a string
array.

[P]EXTRACT (channel [,I/O-opts])
[variable-list] [,IOL=line-ref]

Reads the previous data record and prohibits
access by anyone else to that data record.

[P]EXTRACT RECORD (channel
[,I/O-opts]) string-variable

Same as above except that the RECORD
modifier allows the entire record, including
any field separator characters, to be entered as
data into a single string variable.

[P]READ [(channel [,I/O-opts])]
[variable-list] [,IOL=line-ref]

READs the previous data record.

[P]READ RECORD [(channel [,I/O-opts])]
string-variable

Same as [P]READ except that the RECORD
modifier allows the entire record, including
any field separators, to be entered as data into
a string variable.

PRECISION numeric-value Sets the number of significant digits to be
maintained to the right of the decimal point.

PRINT [(channel [,I/O-opts])] [@(column
[,row])] [,mnemonic [,mnemonic...]] [,output]
[,variable-list [:mask]] [,IOL=line-ref]

Outputs data from the specified variables to a
terminal, printer, or file. Primarily used to
print to terminals and printers.

PRINT RECORD [(channel [,I/O-opts])]
string-variable

Same as PRINT except that the RECORD
modifier allows an entire record, including
delimiting characters, to be output as data from
a single variable.

PROGRAM file-name, program-size,
disk-num, sector-num
[,ERR=line-ref|,ERC=numeric-value]

Creates a new data file in a logical disk
directory to contain an executable program.

[P]SAVE [program-name [,size, disk-num,
sector-num]]
[,ERR=line-ref|,ERC=numeric-value]
[,PWD=passwd]

Writes the current contents of program
memory to a file on a disk using a password to
encrypt the program file.

PUT disk-num, sector-num
[,ERR=line-ref|,ERC=numeric-value],
string-variable [,verification]

Writes data to a specific disk sector rather than
to an OPEN file (MS-DOS only).

[P]READ [(channel [,I/O-opts])]
[variable-list] [,IOL=line-ref]

READs the next data record.

100
Copyright  2014 Thoroughbred Software International, Inc.

[P]READ RECORD [(channel [,I/O-opts])]
string-variable

Same as above except that the RECORD
modifier allows the entire record, including
any field separators, to be entered as data into
a string variable.

RELEASE [integer]
 or
RELEASE [task-id]

Terminates task operation and re-allocates its
memory, returning control to the operating
system.

REM [comment] A remarks program statement.

REMOVE (channel, KEY=string-value
[,I/O-opts])

Removes a key from a SORT file or a key and
the associated data from a DIRECT file. The
record pointer is advanced to indicate the next
sequential record.

REMSORT file-name, SRT=sort-name
[,ERR=line-ref|,ERC=numeric-value]

Removes a sort key sequence from an MSORT
or TISAM file.

RENAME [disk-num,] old-file-name,
new-file-name
[,ERR=line-ref|,ERC=numeric-value]

Renames a file without changing its
characteristics or position on its logical disk.

RESERVE disk-num
[,ERR=line-ref|,ERC=numeric-value]

Restricts access to a logical disk directory by
any other task except the issuing task.

RESET Initializes program parameters and
environment.

RETRY Transfers program execution from an error
branch taken by a SETERR directive or the
ERR=, END=, or DOM= options, back to the
statement that generated the error and attempt
to execute it again.

RETURN Terminates a subroutine and returns program
execution to the statement following the
originating [ON]GOSUB directive or the point
of interruption by the Escape key.

ROLLBACK
[,ERR=line-ref|,ERC=numeric-value]

Terminates a TRANSACTION BEGIN
directive.

RUN [program-name]
[,ERR=line-ref|,ERC=numeric-value]

Commences execution of the program.

[P]SAVE [program-name [, size, disk-num,
sector-num]]
[,ERR=line-ref|,ERC=numeric-value]
[,PWD=passwd]

Writes current contents of program memory to
a file on a disk.

SERIAL file-name, num-records, record-size,
disk-num, sector-num
[,ERR=line-ref|,ERC=numeric-value]

Creates a new, variable record length,
sequential access file in a logical disk
directory.

101
Copyright  2014 Thoroughbred Software International, Inc.

SET CMASK currency-parms
[,ERR=line-ref|,ERC=numeric-value]

Assigns foreign currency parameters.

SET DATEMASK string-value
[,ERR=line-ref|,ERC=numeric-value]

Changes the system SQL date format.

SET DATESTRINGS string-value
[,ERR=line-ref|,ERC=numeric-value]

Changes the DATESTRINGS system
variable.

SETDAY string-value Assigns a specific date to the DAY system
variable for this task.

SET DIR string-value
[,ERR=line-ref|,ERC=numeric-value]

Changes the current directory for this task.

SETDRIVE disk specifier
[,ERR=line-ref|,ERC=numeric-value]

Changes the default logical disk directory used
in file name searches.

SETERC numeric-value Specifies a user-defined value for the ERC
system variable. This variable will contain the
value if an error occurred during processing; if
no error occurred ERC will contain 0, its
initial value.

SETERR line-ref Transfers program execution to a specific
program line number if an error occurs during
execution.

SETESC line-ref Transfers program execution to the specified
program line number when the Escape key is
pressed.

SET HOTKEY hotkey-value,
"public-program"

Enables a user to define a hotkey that calls a
public program.

SET PREFIX string-value
[,ERR=line-ref|,ERC=numeric-value]

Changes the PREFIX system variable.

SET PRM string-value
[,ERR=line-ref|,ERC=numeric-value]

Sets all the PRM statements that are flags.

SET TRACEMODE string
[,ERR=line-ref|,ERC=numeric-value]

Sets the mode of tracing during a
SETTRACE.

SETTIME numeric-value Sets the TIM system variable for this task to a
specific hour and decimal value (based on a
24-hour clock).

SETTRACE [(channel)] Initiates a trace of the execution of a program
on a program line basis.

SHORTVAR Sets the environment to process short variable
syntax.

SORT file-name, key-size, num-keys,
disk-num, sector-num
[,ERR=line-ref|,ERC=numeric-value]

Creates a new, single-keyed file in a logical
disk directory containing only keys, no data.

102
Copyright  2014 Thoroughbred Software International, Inc.

START pages
[,ERR=line-ref|,ERC=numeric-value]
[,BNK=bank-num] [,program-name] [,task-id]

Initializes a task and allocates memory for its
execution.

STOP Terminates program execution and initializes
certain task parameters.

SYMTAB program-specifier,

string-array-name [ALL]
[,ERR=line-ref|,ERC=numeric-value]

Places, in a string array, the symbol tables
from a program file.

SYSTEM [string-value] Temporarily exits from Thoroughbred Basic to
the operating system to allow execution of any
valid operating system commands or
functions.

TABLE mask table Defines a conversion table that is used to
convert input or output data from one character
set to another.

TEXT file-name, disk-num, sector-num
[,ERR=line-ref|,ERC=numeric-value]

Defines a flat-file that is byte oriented, with no
concept of records, to provide an interface to
system text files.

TISAM file-name, sortdef1 [:mode1]
[,sortdef2 [:mode2] [, ... sortdefn [:moden]]],
num-records, record-size, disk-num,
sector-num
[,ERR=line-ref|,ERC=numeric-value]

Defines a multiple-keyed, keyed access file on
disk compatible to a C-ISAM file structure,
with the sizes and keys given.

TRANSACTION BEGIN
[,ERR=line-ref|,ERC=numeric-value]

Begins the tracking of records.

UNLOCK (channel
[,ERR=line-ref|,ERC=numeric-value])

Allows access to a file by all other users that
was previously prohibited by a LOCK
directive.

UNPACK ARRAY string-value,
array-name[ALL]
[,ERR=line-ref|,ERC=numeric-value]

Re-DIMensions, restores, and populates an
existing string array from a string that was
packed into a format with the PACK ARRAY
directive.

WAIT seconds Suspends program execution for a specified
period of time.

WHILE condition WEND Provides a loop within a program.

WINDOW ATTR (attribute-num) Sets the current terminal attribute state.

WINDOW COLOR (color-num) Sets the current terminal color to a specified
attribute state.

WINDOW CREATE
(width,height,col1,row1) [attributes]

Defines a Thoroughbred Basic Window and all
its attributes to the Thoroughbred Basic
Window Manager and activates that
Thoroughbred Basic Window.

103
Copyright  2014 Thoroughbred Software International, Inc.

WINDOW DELETE (window-name) Deletes a selected Thoroughbred Basic
Window or all Thoroughbred Basic Windows
except the base Thoroughbred Basic Window.

WINDOW FKEYS (fkey-values)
["NAME=window-name"]

Provides for the reloading of function keys
with values specific to this Thoroughbred
Basic Window.

WINDOW GETINFO (array-name [ALL])
["NAME=window-name"]

Places information about the current
Thoroughbred Basic Window and
Thoroughbred Basic Window Manager status
into a string array.

WINDOW IOREGION (CREATE, width,
height, col1, row1)

Restricts terminal input and output to a
selected portion of the current Thoroughbred
Basic Window.

WINDOW IOREGION (DELETE) Deletes any defined IOREGION in the
currently active Thoroughbred Basic Window.

WINDOW MOVE (col1,row1)
"NAME=window-name"]

Relocates the selected Thoroughbred Basic
Window to a new column and row position on
the terminal screen.

WINDOW PANEL (CREATE, width, height,
col1, row1, panel-name) [attributes]

Defines an area within a Thoroughbred Basic
Window that is available for terminal input
and output.

WINDOW PANEL (DELETE, panel-name) Deletes the designated panel-name definition.

WINDOW PANEL (SELECT, panel-name) Activates the designated panel-name.

WINDOW PANEL (OFF) Indicates that terminal input and output is
permitted to all parts of the currently active
Thoroughbred Basic Window.

WINDOW POP Deletes the currently active Thoroughbred
Basic Window and refreshes the screen
vacated by the Thoroughbred Basic Window.

WINDOW PUSH ["NAME=window-name"] Creates a new Thoroughbred Basic Window,
identical in attributes to the currently active
Thoroughbred Basic Window, and places the
cursor in the new Thoroughbred Basic
Window.

WINDOW PUT [delim-1] (map-string)
 or
WINDOW PUT [delim-1] delim-2

Reprints a Thoroughbred Basic Window
partially or completely, with or without text,
attributes, and/or color.

WINDOW REFRESH Redisplays the entire screen as it was last
known to the Thoroughbred Basic Window
Manager.

104
Copyright  2014 Thoroughbred Software International, Inc.

WINDOW RESIZE (width, height)
[window-name] [,] [up-down, left-right]

Enlarges or reduces the size of the specified
Thoroughbred Basic Window based on its
currently defined size and the sizing
commands given.

WINDOW RESTORE (window-name) Displays and activates a previously saved or
created Thoroughbred Basic Window that is
not currently active.

WINDOW SAVE (window-name) Removes the current Thoroughbred Basic
Window, saving it with a specified name, and
reverts to the last known screen and position.

WINDOW SCROLL (ON) Enables the scrolling attributes of the active
Thoroughbred Basic Window or IOREGION.

WINDOW SCROLL (OFF) Turns off the scroll attribute for the active
Thoroughbred Basic Window.

WINDOW SCROLL (LEFT, col1) Scrolls left the specified number of columns.

WINDOW SCROLL (RIGHT, col1) Scrolls right the specified number of columns.

WINDOW SCROLL (UP, row1) Scrolls up the specified number of rows.

WINDOW SCROLL (DOWN, row1) Scrolls down the specified number of rows.

WINDOW SELECT ([NOUPDATE,]
window-name)

Selects a designated Thoroughbred Basic
Window to be the active Thoroughbred Basic
Window, displaying it on top of all other
Thoroughbred Basic Windows.

WINDOW SHAPE (BOX, width, height,
col1, row1) [attributes]
 or
WINDOW SHAPE (LINE, direction, col1,
row1,length)

Allows the programmer to specify boxes or
lines within Thoroughbred Basic Windows
without restricting access to any part of the
Thoroughbred Basic Window.

WINDOW SWAP Makes the previously active Thoroughbred
Basic Window active and swaps it with the
currently active Thoroughbred Basic Window.

WINDOW WRAP (ON) Enables the wrap attribute for the current
Thoroughbred Basic Window.

WINDOW WRAP (OFF) Disables the wrap attribute for the current
Thoroughbred Basic Window.

WRITE [(channel [,I/O-opts])] [,variable-list
[:mask]] [,IOL=line-ref]

Outputs data from the specified variables to a
terminal, printer, or file. Primarily used for
files.

WRITE RECORD [(channel [,I/O-opts])]
string-variable

Same as above except that the RECORD
modifier allows an entire record, including
delimiting characters, to be output as data from
a single variable.

105
Copyright  2014 Thoroughbred Software International, Inc.

XCALL "c-function"
[,ERR=line-ref|,ERC=numeric-value]
[,argument-list [. . .]]

Enables Thoroughbred Basic programs to
dynamically call c-compiled programs and
pass data back and forth.

Numeric functions

ABS (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the absolute value of a number.

ACS (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the arc cosine of an angle in radians.

ASC (string-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the unsigned integer value of the first
ASCII character in a string.

ASN (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the arc sine of an angle in radians.

ATN (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the arc tangent of an angle in radians.

ATQ (numeric-value1, numeric-value2
[,ERR=line-ref|,ERC=numeric-value])

Returns the arc tangent of the quotient of two
angles in radians.

BSZ (bank-num
[,ERR=line-ref|,ERC=numeric-value])

Returns the memory bank size in bytes.

COS (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the cosine of an angle in radians.

DEC (string-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the signed decimal integer value of an
ASCII string.

DTN (string-value [,date-mask]
[,ERR=line-ref|,ERC=numeric-value])

Converts a date in string format into SQL
numeric format.

EPT (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns floating point exponent portion of a
number.

ERR (error-list) Returns the position of the value of system
variable err in error-list.

EXP (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the number whose natural logarithm
generated the exponent numeric-value.

FIX (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the integer portion of numeric-value;
unconditionally rounded. If numeric-value is
negative, the returned integer becomes more
negative.

FNx (value-list) Invokes a user-defined numeric function.

FPT (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the fractional portion of any number,
truncating the integer portion while
maintaining the sign of the original number.

106
Copyright  2014 Thoroughbred Software International, Inc.

IND (channel
[,ERR=line-ref|,ERC=numeric-value]
[,END=line-ref])

Returns the index number of the next record in
an OPEN file.

INT (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the integer portion, without rounding,
of a number.

LEN (string-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the length, in number of bytes, of
string-value.

LOG (numeric-value) Returns the base-10 logarithm of a
numeric-value greater than zero.

MAX (numeric-value1 [,numeric-value2 [, ...
numeric-valuen]])

Returns the maximum numeric value from 1 or
more numeric values.

MIN (numeric-value1 [,numeric-value2 [, ...
numeric-valuen]])

Returns the minimum numeric value from 1 or
more numeric values.

MOD (numeric-dividend, numeric-divisor
[,ERR=line-ref|,ERC=numeric-value])

Returns the remainder from the division of two
numbers.

NEA (array-name, numeric-code
[,ERR=line-ref|,ERC=numeric-value])

Returns information about a numeric or string
array.

NLG (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the natural logarithm of a number.

NMV (string-value) Determines if the given string contains a valid
numeric value.

NUM (string-value [,NTP=numeric-type]
[,ERR=line-ref|,ERC=numeric-value])

Converts a number in string format into
numeric format.

POS (search-string relational-operator
reference-string [,step-value [,occurrence]])

Scans a reference string for the occurrence of a
specified substring and returns a numeric value
indicating its position.

RND (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Generates a pseudo-random number.

SGN (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns +1, 0 or B1 indicating the sign of the
specified numeric-value.

SIN (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the sine of an angle expressed in
radians.

SQR (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the square root of a positive number.

SSZ (disk-num
[,ERR=line-ref|,ERC=numeric-value])

Returns the size of the sectors on the disk
containing the specified logical disk directory.

STL (string-variable) Returns the length of string-variable; faster
than LEN function; only usable with simple
string variables.

107
Copyright  2014 Thoroughbred Software International, Inc.

TAN (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the tangent of an angle expressed in
radians.

TCB (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the status of certain program
execution values that change during the
processing of a task.

UNT (file-name) Returns the lowest-numbered channel on
which a file is opened. If the file is not open,
the result is 0.

String functions

=ALL (string-value) Returns a temporary string variable for
comparison to another string variable.

AND (string-value1, string-value2
[,ERR=line-ref|,ERC=numeric-value])

Returns the logical AND of two string-values.

ARG (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the individual argument specified
from the system command that was issued to
start this Thoroughbred Basic task.

ATH (string-value
[,ERR=line-ref|,ERC=numeric-value])

Converts the numeric contents of a string from
ASCII characters to hexadecimal code.

ATR (name$, elem-number, attr-number
[,ERR=line-ref|,ERC=numeric-value])

Returns the attribute value of a data element
from a format currently in memory.

BIN (numeric-value,result-length
[,ERR=line-ref|,ERC=numeric-value])

Converts a decimal integer into binary data.

CGV (string-value-1 [, string-value-2]
[,ERR=line-ref|,ERC=numeric-value])

Creates and maintains global string variables.

CHR (numeric-value
[,ERR=line-ref|,ERC=numeric-value])

Converts a decimal integer into an ASCII
character.

CPL (string-value
[,ERR=line-ref|,ERC=numeric-value])

Compiles a Thoroughbred Basic statement.

CPP (program-string
[,ERR=line-ref|,ERC=numeric-value])

Generates whole programs from within a
Thoroughbred Basic program

CRC (string-value [,2-byte-string]
[,ERR=line-ref|,ERC=numeric-value])

Returns the cyclic redundancy code for
string-value.

CVT (string-value, option-value
[,ERR=line-ref|,ERC=numeric-value])

Edits a string based on the options specified.

DCM (string-expression
[,ERR=line-ref|,ERC=numeric-value])

Compresses string-expression into a series of
like and unlike character packets as a new
string.

DIM (length [,value]
[,ERR=line-ref|,ERC=numeric-value])

Represents a temporary string of specified
length and optional init-value.

108
Copyright  2014 Thoroughbred Software International, Inc.

DSD (string-value
[,ERR=line-ref|,ERC=numeric-value])

Returns system data about the specified task or
device.

DSK (disk-specifier
[,ERR=line-ref|,ERC=numeric-value])

Returns the name of the current default disk or
helps determine which system disks are
configured.

DTR (string, data-defn-table
[,ERR=line-ref|,ERC=numeric-value]
[,SEP=field-sep])

Converts a string that contains fields but not
field separators into a data record structure
with fields and field separators based on
specifications in data-defn-table.

ERM (numeric-value1
[,ERR=line-ref|,ERC=numeric-value])

Returns the text of the specified error code.

FID (channel
[,ERR=line-ref|,ERC=numeric-value])

Returns the file identification data string for a
file OPEN on channel.

FKY (channel [,SRT=sort-name]
[,END=line-ref]
[,ERR=line-ref|,ERC=numeric-value])

Returns the first key of a key-access file
OPEN on channel.

FMD (string-value[[,element-number]
[,occurrence-number]]
[,ERR=line-ref|,ERC=numeric-value]

Returns the data area or a specified portion of
the data area of a format currently in memory.

FMT (str-val [,elem-num [,occ-num]]
[,ERR=line-ref|,ERC=numeric-value])
[:fmt-mask]

Returns the value of a data name in a
formatted string.

FNx$ (value-list) Invokes a user defined string function.

FST (full-path-name, option,
[,ERR=line-ref|,ERC=numeric-value])

Returns selective file system information.

GAP (string-value
[,ERR=line-ref|,ERC=numeric-value])

Generates odd parity for each 7-bit character
using the 8th bit of each byte.

HSH (string-value [,2-byte-string]
[,ERR=line-ref|,ERC=numeric-value])

Returns a pseudo-random 2-byte string
representing a hash algorithm performed on
string-value and an optional, previous HSH
2-byte-string.

HTA (string-value
[,ERR=line-ref|,ERC=numeric-value])

Converts a hexadecimal string to ASCII
printable characters.

INF (numeric-value1, numeric-value2
[,ERR=line-ref|,ERC=numeric-value])

Returns various system and task information.

IOR (string-value1, string-value2
[,ERR=line-ref|,ERC=numeric-value])

Returns a string of equal length to
string-value1 and string-value2 containing the
logical OR of both strings.

KEY (channel [,SRT=sort-name]
[,END=line-ref]
[,ERR=line-ref|,ERC=numeric-value])

Returns the next logical key value for an
OPEN key-access file.

109
Copyright  2014 Thoroughbred Software International, Inc.

LKY (channel [,SRT=sort-name]
[,END=line-ref]
[,ERR=line-ref|,ERC=numeric-value])

Returns the key in a file with the highest value
in the collating sequence; the last key in the
file.

LRC (string-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the longitudinal redundancy check
character of string-value.

LST (string-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the interpretive format of a compiled
format Thoroughbred Basic statement in
string-value.

MNE (mnemonic-code [,channel]
[,ERR=line-ref|,ERC=numeric-value])

Returns the hexadecimal character sequence
from the task's terminal table for the specified
mnemonic, or the escape sequence from an
OPEN printer mnemonic table.

NOT (string-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the logical inverse, bit by bit, of a
string.

NTD (numeric-value [,date-mask]
[,ERR=line-ref|,ERC=numeric-value]

Converts a date in SQL numeric format to a
string format date.

PAD (string-value, numeric-value [,left-right]
[,pad-value]
[,ERR=line-ref|,ERC=numeric-value])

Returns a left-justified or right-justified string
padded to the specified length with the
specified pad character.

PCK (numeric-value, length
[,ERR=line-ref|,ERC=numeric-value])

Packs an integer into a string with one byte per
two digits.

PFL (string-value, symbol-table) Prepares a compiled Thoroughbred Basic
statement for LISTing.

PFP (string-value, symbol-table) Prepares a LISTed statement for compilation
into a Thoroughbred Basic program file.

PGM (numeric-value [,MAIN]) Returns the pseudo-compiled form of the
specified Thoroughbred Basic statement in the
current program.

PKY (channel [,SRT=sort-name]
[,END=line-ref]
[,ERR=line-ref|,ERC=numeric-value])

Returns the previous key value in a key-access
file without changing the current key pointer.

PUB (bank-num
[,ERR=line-ref|,ERC=numeric-value])

Returns information about the public programs
in the specified memory bank.

RTD (data-record, data-defn-table
[,ERR=line-ref|,ERC=numeric-value]
[,SEP=field-sep])

Expands data-record, which contains field
separators and truncated fields, into
fixed-length fields with no field separators
based on data-defn-table.

SDX (string-value
[,ERR=line-ref|,ERC=numeric-value])

Returns the 4-character soundex value for a
specified string.

110
Copyright  2014 Thoroughbred Software International, Inc.

STR (numeric-value [:format-mask]
[,ERR=line-ref|,ERC=numeric-value])
 or
STR (numeric-value, NTP=numeric-type,
SIZ=number-bytes
[,ERR=line-ref|,ERC=numeric-value])

Converts a numeric value into a formatted
string value.

SWP (string-value, swap-option
[,ERR=line-ref|,ERC=numeric-value])

Returns a new string with byte swapping based
on the value of swap-option.

TBL (string-value, table-string
[,ERR=line-ref|,ERC=numeric-value])
 or
TBL (string-value, TBL=line-ref
[,ERR=line-ref|,ERC=numeric-value])

Returns a converted character string based on
the initial string-value and the ANDing
function with table-string.

TSK (bank-num
[,ERR=line-ref|,ERC=numeric-value])

Returns the memory parameters of the active
task located within a specified memory bank.

TSK (0 [,ERR=line-ref|,ERC=numeric-value]) Returns a listing of those ghost tasks, terminal
ports, and peripheral devices with which this
task can communicate and an indicator of their
status.

TSK (2 [,ERR=line-ref|,ERC=numeric-value]) Returns a string of the currently active ghost
tasks.

TSK (3 [,ERR=line-ref|,ERC=numeric-value]) Returns a string of the currently active
terminal IDs.

UCM (string-expression
[,ERR=line-ref|,ERC=numeric-value])

Expands a string that was compressed with
DCM into its full length and value.

UPK (string-value
[,ERR=line-ref|,ERC=numeric-value])

Unpacks the results of the PCK function.

WIN (GET [delim-1] [delim-2]) Returns the partial or complete Thoroughbred
Basic Window, with or without text, attributes,
or color.

WIN (GETCURSOR [,PHYSICAL]) Returns the current cursor position from the
Thoroughbred Basic Window or terminal
screen in 4 bytes.

WIN (GETLIST) Returns a list of the names of the active
Thoroughbred Basic Windows for this task.

WIN (GETSAVEDLIST) Returns a list of the names of the saved
Thoroughbred Basic Windows.

WIN (GETSCREEN) Returns the text and attribute strings for the
entire terminal screen.

XFD (channel, option
[,ERR=line-ref|,ERC=numeric-value])

Returns extended file identification
information on a file or device OPEN on a
channel.

111
Copyright  2014 Thoroughbred Software International, Inc.

XOR (string-value1, string-value2
[,ERR=line-ref|,ERC=numeric-value])

Returns the logical exclusive OR, bit by bit, of
two string expressions of equal length.

System variables

ARGC Returns the number of arguments specified in
the system command that was issued to start
this Thoroughbred Basic task.

CDN Returns the date in SQL numeric date format.

CDS Returns current date in SQL string date format.

CMASK Returns a string containing the non-defaulted
foreign currency parameters.

CTL Returns the code for certain function and
editing keys on the keyboard.

DATEMASK Returns a string that contains the current SQL
date mask.

DATESTRINGS Returns a string with a list of months and days
used by SQL date functions.

DAY Returns the task date as a string

DIR Returns the full path name of the current
directory specified by the last SET DIR
directive.

DNE Returns a 30-character string that contains the
data name that was last assigned an invalid
value.

DSZ Returns available data size to programmer.

ERC Returns the number of the user-defined error
condition that last occurred during program
processing.

ERR Returns the number of the last error generated.

ERRBUF Returns a string containing error conditions
encountered when a program with formats and
data names was compiled (SAVEd).

ESC Returns the one-byte escape character ($1B$).

FDT Returns the FDT value from the fourth entry
of the CNF line in the IPL file used when this
task was initialized.

FMTNL Returns a string containing a list of format
names that have been INCLUDEd.

112
Copyright  2014 Thoroughbred Software International, Inc.

OCH Returns a string containing 2-byte binary
representation of all OPEN channels (except
channel 0).

PGCHARBASE Returns the single character that is the base
character of the sixteen portable business
graphics characters used in Thoroughbred
Basic.

PGN Returns the name of the program currently in
program memory space.

PRC Returns the current setting of PRECISION or
the number 127 to indicate FLOATING
POINT.

PREFIX Returns the directory path names specified by
the last SET PREFIX directive.

PRM Returns all the PRM statements that are flags.

PSZ Returns a value that is the size of the program
currently in memory.

PTN Returns the PTN value from the second entry
of the PTN line in the IPL file used when this
task was initialized.

QUO Returns the one-byte double quote character
(22).

SEP Returns the one-byte field separator character
($8A$).

SSN Returns the serial number of the copy of
Thoroughbred Basic installed on this computer
or network system.

SYS Returns the release number of the
Thoroughbred Basic under which this system
is operating and some limited data about the
operating system.

TIM Returns the time currently being used by the
task in hours and decimal hours.

TRACEMODE Returns the mode of tracing during a
SETTRACE.

TSM Returns information on the status of error and
escape processing within the current task.

UNT Returns the lowest-numbered channel that is
not currently in use (open).

	1. Introduction
	The BASIC language
	Thoroughbred Basic
	Overview of this manual
	On-line help

	2. Data Representation
	Constants versus variables
	Examples of constants
	Examples of variables
	Conventions for naming variables

	Numeric versus string
	Numeric data
	String data

	Converting string data to numeric data
	Converting numeric data to string data
	Masking
	Other characters used in masks
	When data is too large for the mask

	3. Program Control
	Program modes
	Statement labels
	Thoroughbred Basic Console Mode
	Thoroughbred Basic Run Mode

	Mainline routines, subroutines, and functions
	Public programs
	Ghost tasks
	Program Execution
	Thoroughbred Basic Windows
	Using Thoroughbred Basic Windows
	Notes on Thoroughbred Basic Windows

	For more information…

	4. Input/Output Processing
	How programs input or output data
	Input
	Output

	Data organization
	Sequential data access
	Object libraries
	Random data access
	Indexed sequential access

	Other directives used for input/output processing
	Input/output options for directives
	Mnemonics
	Terminal mnemonics
	Printer mnemonics

	How Thoroughbred Basic locates a file
	Directives that cause Thoroughbred Basic to locate a file
	Where Thoroughbred Basic locates the file

	Transaction processing

	5. Thoroughbred Dictionary-IV Interface
	The system dictionary
	Thoroughbred Dictionary-IV API Services
	OO41 Details
	OO41 Example

	Formats and data names
	Physical formats
	Logical formats
	Data element requirements and options
	Format naming conventions
	Assignment rules
	Programming with format and data names
	For more information

	3GL Trigger
	Syntax
	Setting Up the Trigger
	Trigger Definition
	Trigger Method

	OOIO
	OOIO Example
	Example Trigger Method

	7. Thoroughbred Basic Language Overview
	Syntax conventions
	Quick reference
	Directives
	Numeric functions
	String functions
	System variables

